File size: 8,415 Bytes
44925e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import tqdm
import os, glob
import json
import argparse

from render_utils.lib.networks.smpl_torch import SmplTorch
from render_utils.lib.utils.gaussian_np_utils import load_gaussians_from_ply
from render_utils.stitch_body_and_head import load_body_params, load_face_params, get_smpl_verts_and_head_transformation, calc_livehead2livebody


def load_rendering_camera(camera_fpath):
    with open(camera_fpath, 'r') as fp:
        camera_data = json.load(fp)
    camera_data = camera_data[0]
    image_size = [camera_data['width'], camera_data['height']]
    cam_f = [camera_data['fx'], camera_data['fy']]
    cam_pos = np.array(camera_data['position'])
    cam_rot = np.array(camera_data['rotation']).reshape(3, 3)
    c2w = np.eye(4)
    c2w[:3, :3] = cam_rot
    c2w[:3, 3] = cam_pos
    cam_extr = np.linalg.inv(c2w)
    cam_intr = np.eye(3)
    cam_intr[0, 0] = cam_f[0]
    cam_intr[1, 1] = cam_f[1]
    cam_intr[0, 2] = image_size[0] / 2
    cam_intr[1, 2] = image_size[1] / 2
    return cam_extr, cam_intr, image_size

def load_camera_list(camera_fpath):
    with open(camera_fpath, 'r') as fp:
        camera_data = json.load(fp)
    image_size = [camera_data[0]['width'], camera_data[0]['height']]
    cam_list = []
    for cam in camera_data:
        cam_f = [cam['fx'], cam['fy']]
        cam_pos = np.array(cam['position'])
        cam_rot = np.array(cam['rotation']).reshape(3, 3)
        c2w = np.eye(4)
        c2w[:3, :3] = cam_rot
        c2w[:3, 3] = cam_pos
        cam_extr = np.linalg.inv(c2w)
        cam_intr = np.eye(3)
        cam_intr[0, 0] = cam_f[0]
        cam_intr[1, 1] = cam_f[1]
        cam_intr[0, 2] = image_size[0] / 2
        cam_intr[1, 2] = image_size[1] / 2
        cam_list.append((cam_extr, cam_intr))
    return cam_list, image_size

def load_camera_data(cam):
    image_size = [cam['width'], cam['height']]
    cam_f = [cam['fx'], cam['fy']]
    cam_pos = np.array(cam['position'])
    cam_rot = np.array(cam['rotation']).reshape(3, 3)
    c2w = np.eye(4)
    c2w[:3, :3] = cam_rot
    c2w[:3, 3] = cam_pos
    cam_extr = np.linalg.inv(c2w)
    cam_intr = np.eye(3)
    cam_intr[0, 0] = cam_f[0]
    cam_intr[1, 1] = cam_f[1]
    cam_intr[0, 2] = image_size[0] / 2
    cam_intr[1, 2] = image_size[1] / 2
    
    return (cam_extr, cam_intr), image_size

def calc_offline_rendering_param(

        body_gaussian_root_dir, ref_head_gaussian_path, ref_head_param_path, render_cam_fpath, 

        body_head_blending_param_path):
    body_param_flist = sorted(glob.glob(os.path.join(body_gaussian_root_dir, 'posed_params/*.npz')))

    head_gaussians = load_gaussians_from_ply(ref_head_gaussian_path)
    head_pose, head_scale, id_coeff, exp_coeff = load_face_params(ref_head_param_path)
    # cam_extr_body, cam_intr_body, image_size = load_rendering_camera(render_cam_fpath)
    cam_list, image_size = load_camera_list(render_cam_fpath)

    body_head_blending_params = np.load(body_head_blending_param_path)
    smplx_to_faceverse = body_head_blending_params['smplx_to_faceverse']
    residual_transf = body_head_blending_params['residual_transf']
    body_nonface_mask = body_head_blending_params['body_nonface_mask']
    head_nonface_mask = body_head_blending_params['head_nonface_mask']
    head_facial_idx = body_head_blending_params['head_facial_idx']
    body_facial_idx = body_head_blending_params['body_facial_idx']
    head_body_corr_idx = body_head_blending_params['head_body_corr_idx']
    head_color_bw = body_head_blending_params['head_color_bw']
    color_transfer = body_head_blending_params['color_transfer']

    smpl = SmplTorch(model_file='./AnimatableGaussians/smpl_files/smplx/SMPLX_NEUTRAL.npz')

    head_cam_extr = []
    head_cam_intr = []
    head_cam_intr_zoom = []
    head_zoom_center = []
    head_zoom_scale = []
    
    for i, body_param_fpath in enumerate(tqdm.tqdm(body_param_flist)):
        global_orient, transl, body_pose, betas = load_body_params(body_param_fpath)
        # body_gaussians = load_gaussians_from_ply(body_gaussian_fpath)

        smpl_verts, head_joint_transfmat = get_smpl_verts_and_head_transformation(
            smpl, global_orient, body_pose, transl, betas)
        livehead2livebody = calc_livehead2livebody(head_pose, smplx_to_faceverse, head_joint_transfmat)
        total_transf = np.matmul(livehead2livebody, residual_transf)

        cam_extr = np.matmul(cam_list[i][0], total_transf)
        cam_intr = np.copy(cam_list[i][1])

        head_cam_extr.append(cam_extr)
        head_cam_intr.append(cam_intr)

        pts = np.copy(head_gaussians.xyz)
        pts_proj = np.matmul(pts, cam_extr[:3, :3].transpose()) + cam_extr[:3, 3]
        pts_proj = np.matmul(pts_proj, cam_intr.transpose())
        pts_proj = pts_proj / pts_proj[:, 2:]
        # pts_proj = np.int32(np.round(pts_proj[:, :2]))

        # img = np.zeros([image_size[1], image_size[0], 3], dtype=np.uint8)
        # for p in pts_proj[::50]:
        #     p = np.clip(p, 0, image_size[0] - 1)
        #     cv.circle(img, (int(p[0]), int(p[1])), 2, (0, 255, 0), -1)
        # cv.imshow('img', img)

        pts_min, pts_max = np.min(pts_proj, axis=0), np.max(pts_proj, axis=0)
        pts_center = (pts_min + pts_max) // 2
        pts_size = np.max(pts_max - pts_min)
        tgt_pts_size = 350
        tgt_image_size = 512
        zoom_scale = tgt_pts_size / pts_size
        cam_intr_zoom = np.copy(cam_intr)
        cam_intr_zoom[:2] *= zoom_scale
        cam_intr_zoom[0, 2] = cam_intr_zoom[0, 2] - (pts_center[0]*zoom_scale - tgt_image_size/2)
        cam_intr_zoom[1, 2] = cam_intr_zoom[1, 2] - (pts_center[1]*zoom_scale - tgt_image_size/2)
        head_cam_intr_zoom.append(cam_intr_zoom)
        head_zoom_center.append(pts_center)
        head_zoom_scale.append(zoom_scale)

        # pts_proj = np.matmul(pts, cam_extr[:3, :3].transpose()) + cam_extr[:3, 3]
        # pts_proj = np.matmul(pts_proj, cam_intr_zoom.transpose())
        # pts_proj = pts_proj / pts_proj[:, 2:]
        # pts_proj = np.int32(np.round(pts_proj[:, :2]))
        # img = np.zeros([512, 512, 3], dtype=np.uint8)
        # for p in pts_proj[::50]:
        #     p = np.clip(p, 0, image_size[0] - 1)
        #     cv.circle(img, (int(p[0]), int(p[1])), 2, (0, 255, 0), -1)
        # cv.imshow('img_zoom', img)
        # cv.waitKey()

    np.savez(os.path.join(os.path.dirname(body_head_blending_param_path), 'head_zoomin_render_param.npz'), 
             cam_extr=head_cam_extr, cam_intr=head_cam_intr, image_size=image_size,
             cam_intr_zoom=head_cam_intr_zoom, zoom_image_size=[tgt_image_size, tgt_image_size], 
             zoom_center=head_zoom_center, 
             zoom_scale=head_zoom_scale, 
             head_pose=head_pose, head_scale=head_scale, head_color_bw=head_color_bw)
    


if __name__ == '__main__':
    parser = argparse.ArgumentParser()

    """

    body_gaussian_root_dir, ref_head_gaussian_path, ref_head_param_path, render_cam_fpath, 

        body_head_blending_param_path

    """
    parser.add_argument('--body_gaussian_root_dir', type=str)
    parser.add_argument('--ref_head_gaussian_path', type=str)
    parser.add_argument('--ref_head_param_path', type=str)
    parser.add_argument('--render_cam_fpath', type=str)
    parser.add_argument('--body_head_blending_param_path', type=str)
    args = parser.parse_args()
    calc_offline_rendering_param(
        args.body_gaussian_root_dir, 
        args.ref_head_gaussian_path, 
        args.ref_head_param_path, 
        args.render_cam_fpath, 
        args.body_head_blending_param_path
    )

"""

python calc_offline_rendering_param.py ^

--body_gaussian_root_dir ./AnimatableGaussians/test_results/huawei0425/checkpoints/AMASS__test_poses_ours_front_view/batch_750000/pca_20_sigma_2.00/ ^

--ref_head_gaussian_path ./Gaussian-Head-Avatar/results/reenactment/huawei0425_self/posed_gaussians/000000.ply ^

--ref_head_param_path ./Gaussian-Head-Avatar/results/reenactment/huawei0425_self/params/000000_param.npz ^

--render_cam_fpath ./AnimatableGaussians/test_results/huawei0425/checkpoints/AMASS__test_poses_ours_front_view/batch_750000/pca_20_sigma_2.00/cameras.json ^

--body_head_blending_param_path ./data/body_face_stitching_sr/body_head_blending_param.npz



"""