File size: 7,118 Bytes
ec9a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
import torch.nn.functional as F
from tqdm import tqdm
import numpy as np
import math
from GHA.lib.utils.graphics_utils import getWorld2View2, getProjectionMatrix


class Reenactment():
    def __init__(self, dataloader, gaussianhead, supres, camera, recorder, gpu_id, freeview):
        self.dataloader = dataloader
        self.gaussianhead = gaussianhead
        self.supres = supres
        self.camera = camera
        self.recorder = recorder
        self.device = torch.device('cuda:%d' % gpu_id)
        self.freeview = freeview

    def run(self, stop_fid=None):
        for idx, data in tqdm(enumerate(self.dataloader)):

            to_cuda = ['images', 'intrinsics', 'extrinsics', 'world_view_transform', 'projection_matrix', 'full_proj_transform', 'camera_center', 
                       'pose', 'scale', 'exp_coeff', 'pose_code']
            for data_item in to_cuda:
                data[data_item] = data[data_item].to(device=self.device)

            if not self.freeview:
                if idx > 0:
                    data['pose'] = pose_last * 0.5 + data['pose'] * 0.5
                    data['exp_coeff'] = exp_last * 0.5 + data['exp_coeff'] * 0.5
                pose_last = data['pose']
                exp_last = data['exp_coeff']
                
            else:
                data['pose'] *= 0
                if idx > 0:
                    data['exp_coeff'] = exp_last * 0.5 + data['exp_coeff'] * 0.5
                exp_last = data['exp_coeff']
            
            with torch.no_grad():
                data = self.gaussianhead.generate(data)
                data = self.camera.render_gaussian(data, 512)
                render_images = data['render_images']
                supres_images = self.supres(render_images)
                data['supres_images'] = supres_images

            log = {
                'data': data,
                'iter': idx
            }
            self.recorder.log(log)
            if stop_fid is not None and idx == stop_fid:
                print('# Reaching stop frame index (%d)' % stop_fid)
                break
    
    def run_for_offline_stitching(self, offline_rendering_param_fpath):
        head_offline_rendering_param = np.load(offline_rendering_param_fpath)
        cam_extr = head_offline_rendering_param['cam_extr']
        cam_intr = head_offline_rendering_param['cam_intr']
        cam_intr_zoom = head_offline_rendering_param['cam_intr_zoom']
        zoom_image_size = head_offline_rendering_param['zoom_image_size']
        head_pose = head_offline_rendering_param['head_pose']
        head_scale = head_offline_rendering_param['head_scale']
        head_color_bw = head_offline_rendering_param['head_color_bw']
        zoom_scale = head_offline_rendering_param['zoom_scale']
        head_pose = torch.from_numpy(head_pose.astype(np.float32)).to(self.device)
        head_color_bw = torch.from_numpy(head_color_bw.astype(np.float32)).to(self.device)
        render_size = 512

        for idx, data in enumerate(tqdm(self.dataloader)):
            if idx >= len(cam_extr):
                print('# Reaching the end of offline stiitching parameters! Rendering stopped. ')
                break

            new_gs_camera_param_dict = self.prepare_camera_data_for_gs_rendering(cam_extr[idx], cam_intr_zoom[idx], render_size, render_size)
            for k in new_gs_camera_param_dict.keys():
                if isinstance(new_gs_camera_param_dict[k], torch.Tensor):
                    new_gs_camera_param_dict[k] = new_gs_camera_param_dict[k].unsqueeze(0).to(self.device)
            new_gs_camera_param_dict['pose'] = head_pose.unsqueeze(0).to(self.device)

            to_cuda = ['images', 'intrinsics', 'extrinsics', 'world_view_transform', 'projection_matrix', 'full_proj_transform', 'camera_center', 
                       'pose', 'scale', 'exp_coeff', 'pose_code']
            for data_item in to_cuda:
                data[data_item] = data[data_item].to(device=self.device)

            data.update(new_gs_camera_param_dict)

            with torch.no_grad():
                data = self.gaussianhead.generate(data)
                data = self.camera.render_gaussian(data, 512)
                render_images = data['render_images']
                supres_images = self.supres(render_images)
                data['supres_images'] = supres_images

                data['bg_color'] = torch.zeros([1, 32], device=self.device, dtype=torch.float32)
                data['color_bk'] = data.pop('color')
                data['color'] = torch.ones_like(data['color_bk']) * head_color_bw.reshape([1, -1, 1]) * 2.0
                data['color'][:, :, 1] = 1
                data['color'] = torch.clamp(data['color'], 0., 1.)
                data = self.camera.render_gaussian(data, render_size)
                render_bw = data['render_images'][:, :3, :, :]
                data['color'] = data.pop('color_bk')
                data['render_bw'] = render_bw

            log = {
                'data': data,
                'iter': idx
            }
            self.recorder.log(log)

    def prepare_camera_data_for_gs_rendering(self, extrinsic, intrinsic, original_resolution, new_resolution):
        extrinsic = np.copy(extrinsic)
        intrinsic = np.copy(intrinsic)
        new_intrinsic = np.copy(intrinsic)
        new_intrinsic[:2] *= new_resolution / original_resolution

        intrinsic[0, 0] = intrinsic[0, 0] * 2 / original_resolution
        intrinsic[0, 2] = intrinsic[1, 2] * 2 / original_resolution - 1
        intrinsic[1, 1] = intrinsic[1, 1] * 2 / original_resolution
        intrinsic[1, 2] = intrinsic[1, 2] * 2 / original_resolution - 1
        fovx = 2 * math.atan(1 / intrinsic[0, 0])
        fovy = 2 * math.atan(1 / intrinsic[1, 1])

        world_view_transform = torch.tensor(getWorld2View2(extrinsic[:3, :3].transpose(), extrinsic[:3, 3])).transpose(0, 1)
        projection_matrix = getProjectionMatrix(
            znear=0.01, zfar=100, fovX=None, fovY=None, 
            K=new_intrinsic, img_h=new_resolution, img_w=new_resolution).transpose(0,1)
        full_proj_transform = (world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))).squeeze(0)
        camera_center = world_view_transform.inverse()[3, :3]

        c2w = np.linalg.inv(extrinsic)
        viewdir = np.matmul(c2w[:3, :3], np.array([0, 0, -1], np.float32).reshape([3, 1])).reshape([-1])
        viewdir = torch.from_numpy(viewdir.astype(np.float32))

        return {
            'extrinsics': torch.from_numpy(extrinsic.astype(np.float32)),
            'intrinsics': torch.from_numpy(intrinsic.astype(np.float32)),
            'viewdir': viewdir, 
            'fovx': torch.Tensor([fovx]),
            'fovy': torch.Tensor([fovy]),
            'world_view_transform': world_view_transform,
            'projection_matrix': projection_matrix,
            'full_proj_transform': full_proj_transform,
            'camera_center': camera_center
            }