Spaces:
Running
Running
from calendar import c | |
import os | |
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
# os.environ['TORCH_USE_CUDA_DSA'] = '1' | |
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1' | |
import yaml | |
import shutil | |
import collections | |
import torch | |
import torch.utils.data | |
import torch.nn.functional as F | |
import numpy as np | |
import cv2 as cv | |
import glob | |
import datetime | |
import trimesh | |
from torch.utils.tensorboard import SummaryWriter | |
from tqdm import tqdm | |
import importlib | |
# import config | |
from omegaconf import OmegaConf | |
import json | |
import math | |
import cv2 | |
# AnimatableGaussians part | |
from AnimatableGaussians.network.lpips import LPIPS | |
from AnimatableGaussians.dataset.dataset_pose import PoseDataset | |
import AnimatableGaussians.utils.net_util as net_util | |
# import AnimatableGaussians.utils.visualize_util as visualize_util | |
from AnimatableGaussians.utils.camera_dir import get_camera_dir | |
from AnimatableGaussians.utils.renderer import Renderer | |
from AnimatableGaussians.utils.net_util import to_cuda | |
from AnimatableGaussians.utils.obj_io import save_mesh_as_ply | |
from AnimatableGaussians.gaussians.obj_io import save_gaussians_as_ply | |
import AnimatableGaussians.config as ag_config | |
# Gaussian-Head-Avatar part | |
from GHA.config.config import config_reenactment | |
from GHA.lib.dataset.Dataset import ReenactmentDataset | |
from GHA.lib.dataset.DataLoaderX import DataLoaderX | |
from GHA.lib.module.GaussianHeadModule import GaussianHeadModule | |
from GHA.lib.module.SuperResolutionModule import SuperResolutionModule | |
from GHA.lib.module.CameraModule import CameraModule | |
from GHA.lib.recorder.Recorder import ReenactmentRecorder | |
from GHA.lib.apps.Reenactment import Reenactment | |
from GHA.lib.utils.graphics_utils import getWorld2View2, getProjectionMatrix | |
# cat utils | |
from calc_offline_rendering_param import calc_offline_rendering_param | |
from calc_offline_rendering_param import load_camera_data | |
from render_utils.lib.networks.smpl_torch import SmplTorch | |
from render_utils.lib.utils.gaussian_np_utils import load_gaussians_from_ply | |
from render_utils.stitch_body_and_head import load_body_params, load_face_params, get_smpl_verts_and_head_transformation, calc_livehead2livebody | |
from render_utils.stitch_funcs import soften_blending_mask,paste_back_with_linear_interp | |
import ipdb | |
class Avatar: | |
def __init__(self, config): | |
self.config = config | |
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
# animateble gaussians part init | |
self.body = config.animatablegaussians | |
self.body.mode = 'test' | |
ag_config.set_opt(self.body) | |
avatar_module = self.body['model'].get('module', 'AnimatableGaussians.network.avatar') | |
print('Import AvatarNet from %s' % avatar_module) | |
AvatarNet = importlib.import_module(avatar_module).AvatarNet | |
self.avatar_net = AvatarNet(self.body.model).to(self.device) | |
self.random_bg_color = self.body['train'].get('random_bg_color', True) | |
self.bg_color = (1., 1., 1.) | |
self.bg_color_cuda = torch.from_numpy(np.asarray(self.bg_color)).to(torch.float32).to(self.device) | |
self.loss_weight = self.body['train']['loss_weight'] | |
self.finetune_color = self.body['train']['finetune_color'] | |
print('# Parameter number of AvatarNet is %d' % (sum([p.numel() for p in self.avatar_net.parameters()]))) | |
# gaussian head avatar part init | |
self.head = config.gha | |
# cat utils part init | |
self.cat = config.cat | |
def build_dataset(self, body_pose_path=None, face_exp_path=None): | |
# build body_dataset | |
if body_pose_path is not None: | |
self.body['test']['pose_data']['data_path'] = body_pose_path | |
body_pose = np.load(body_pose_path, allow_pickle = True) | |
# print('body_pose keys:', body_pose.keys()) | |
# print('body_pose shape:', body_pose['poses'].shape) | |
self.body['test']['pose_data']['frame_range'] = [0,body_pose['poses'].shape[0]] | |
dataset_module = self.body.get('dataset', 'MvRgbDatasetAvatarReX') | |
MvRgbDataset = importlib.import_module('AnimatableGaussians.dataset.dataset_mv_rgb').__getattribute__(dataset_module) | |
self.body_training_dataset = MvRgbDataset(**self.body['train']['data'], training = False) | |
if self.body['test'].get('n_pca', -1) >= 1: | |
self.body_training_dataset.compute_pca(n_components = self.body['test']['n_pca']) | |
if 'pose_data' in self.body.test: | |
testing_dataset = PoseDataset(**self.body['test']['pose_data'], smpl_shape = self.body_training_dataset.smpl_data['betas'][0]) | |
dataset_name = testing_dataset.dataset_name | |
seq_name = testing_dataset.seq_name | |
else: | |
# throw an error | |
raise ValueError('No pose data in test config') | |
self.body_dataset = testing_dataset | |
iter_idx = self.load_ckpt(self.body['test']['prev_ckpt'], False)[1] | |
self.head_config = config_reenactment() | |
self.head_config.load(self.head.config_path) | |
if face_exp_path is not None: | |
self.head_config.cfg.dataset.exp_path = face_exp_path | |
self.head_config.freeze() | |
self.head_config = self.head_config.get_cfg() | |
# build face dataset | |
self.head_dataset = ReenactmentDataset(self.head_config.dataset) | |
self.head_dataloader = DataLoaderX(self.head_dataset, batch_size=1, shuffle=False, pin_memory=True) | |
# device = torch.device('cuda:%d' % cfg.gpu_id) | |
gaussianhead_state_dict = torch.load(self.head_config.load_gaussianhead_checkpoint, map_location=lambda storage, loc: storage) | |
self.gaussianhead = GaussianHeadModule(self.head_config.gaussianheadmodule, | |
xyz=gaussianhead_state_dict['xyz'], | |
feature=gaussianhead_state_dict['feature'], | |
landmarks_3d_neutral=gaussianhead_state_dict['landmarks_3d_neutral']).to(self.device) | |
self.gaussianhead.load_state_dict(gaussianhead_state_dict) | |
self.supres = SuperResolutionModule(self.head_config.supresmodule).to(self.device) | |
self.supres.load_state_dict(torch.load(self.head_config.load_supres_checkpoint, map_location=lambda storage, loc: storage)) | |
self.head_camera = CameraModule() | |
self.head_recorder = ReenactmentRecorder(self.head_config.recorder) | |
def render_all(self): | |
# len = short one | |
lenth = min(len(self.body_dataset), len(self.head_dataloader)) | |
# build a tqdm bar | |
for idx in tqdm(range(lenth)): | |
self.reder_frame(idx) | |
# for idx in range(lenth): | |
# self.reder_frame(idx) | |
def reder_frame(self, idx): | |
# 渲染身体和各种mask | |
body_output = self.build_body(idx) | |
# 计算头的渲染参数 | |
head_param = self.build_param(idx,body_output) | |
# 渲染头 | |
head_output = self.build_head(idx, head_param) | |
# 把头和身体拼接起来 | |
body_rendering= body_output['rgb_map_wo_hand'].astype(np.float32) / 255.0 | |
# save body_rendering | |
# cv.imwrite('./output' + '/body_rgb_%08d.jpg' % idx, (body_output['rgb_map']).astype(np.uint8)) | |
# cv.imwrite('./output' + '/body_rgb_wo_hand%08d.jpg' % idx, (body_output['rgb_map_wo_hand']).astype(np.uint8)) | |
body_mask = body_output['mask_map'].astype(np.float32) / 255.0 | |
body_torso_mask = body_output['torso_map'].astype(np.float32) / 255.0 | |
head_rendering = head_output['render_images'].astype(np.float32) / 255.0 | |
head_blending_mask = head_output['render_bw'].astype(np.float32) / 255.0 | |
body_head_blending_params = np.load(self.cat.body_head_blending_param_path) | |
head_offline_rendering_param = head_param | |
stitch_output = self.stich_head_body(body_rendering, body_mask, body_torso_mask, head_rendering, head_blending_mask, body_head_blending_params, head_offline_rendering_param) | |
cv.imwrite('./output' + '/%08d.jpg' % idx, stitch_output) | |
# 渲染手和手的mask | |
# 把手拼上去 | |
return stitch_output | |
pass | |
def load_ckpt(self, path, load_optm = True): | |
print('Loading networks from ', path + '/net.pt') | |
net_dict = torch.load(path + '/net.pt') | |
if 'avatar_net' in net_dict: | |
self.avatar_net.load_state_dict(net_dict['avatar_net']) | |
else: | |
print('[WARNING] Cannot find "avatar_net" from the network checkpoint!') | |
epoch_idx = net_dict['epoch_idx'] | |
iter_idx = net_dict['iter_idx'] | |
# if load_optm and os.path.exists(path + '/optm.pt'): | |
# print('Loading optimizers from ', path + '/optm.pt') | |
# optm_dict = torch.load(path + '/optm.pt') | |
# if 'avatar_net' in optm_dict: | |
# self.optm.load_state_dict(optm_dict['avatar_net']) | |
# else: | |
# print('[WARNING] Cannot find "avatar_net" from the optimizer checkpoint!') | |
return epoch_idx, iter_idx | |
def build_body(self,idx): | |
self.avatar_net.eval() | |
geo_renderer = None | |
item_0 = self.body_dataset.getitem(0, training = False) | |
object_center = item_0['live_bounds'].mean(0) | |
global_orient = item_0['global_orient'].cpu().numpy() if isinstance(item_0['global_orient'], torch.Tensor) else item_0['global_orient'] | |
use_pca = self.body['test'].get('n_pca', -1) >= 1 | |
# set x and z to 0 | |
global_orient[0] = 0 | |
global_orient[2] = 0 | |
global_orient = cv.Rodrigues(global_orient)[0] | |
time_start = torch.cuda.Event(enable_timing = True) | |
time_start_all = torch.cuda.Event(enable_timing = True) | |
time_end = torch.cuda.Event(enable_timing = True) | |
if self.body['test'].get('fix_hand', False): | |
self.avatar_net.generate_mean_hands() | |
img_scale = self.body['test'].get('img_scale', 1.0) | |
view_setting = self.body['test'].get('view_setting', 'free') | |
extr, intr, img_h, img_w = get_camera_dir(idx, object_center, global_orient, img_scale, view_setting) | |
w2c = extr | |
c2w = np.linalg.inv(w2c) | |
pos = c2w[:3, 3] | |
rot = c2w[:3, :3] | |
serializable_array_2d = [x.tolist() for x in rot] | |
camera_entry = { | |
'width': int(img_w), | |
'height': int(img_h), | |
'position': pos.tolist(), | |
'rotation': serializable_array_2d, | |
'fy': float(intr[1, 1]), | |
'fx': float(intr[0, 0]), | |
} | |
getitem_func = self.body_dataset.getitem_fast if hasattr(self.body_dataset, 'getitem_fast') else self.body_dataset.getitem | |
item = getitem_func( | |
idx, | |
training = False, | |
extr = extr, | |
intr = intr, | |
img_w = img_w, | |
img_h = img_h | |
) | |
items = to_cuda(item, add_batch = False) | |
if 'smpl_pos_map' not in items: | |
self.avatar_net.get_pose_map(items) | |
# pca | |
if use_pca: | |
mask = self.body_training_dataset.pos_map_mask | |
live_pos_map = items['smpl_pos_map'].permute(1, 2, 0).cpu().numpy() | |
front_live_pos_map, back_live_pos_map = np.split(live_pos_map, [3], 2) | |
pose_conds = front_live_pos_map[mask] | |
new_pose_conds = self.body_training_dataset.transform_pca(pose_conds, sigma_pca = float(self.body['test'].get('sigma_pca', 2.))) | |
front_live_pos_map[mask] = new_pose_conds | |
live_pos_map = np.concatenate([front_live_pos_map, back_live_pos_map], 2) | |
items.update({ | |
'smpl_pos_map_pca': torch.from_numpy(live_pos_map).to(self.device).permute(2, 0, 1) | |
}) | |
# print items | |
# print(items.keys()) | |
# print(items.values()) | |
# exit() | |
# get render result | |
output = self.avatar_net.render(items, bg_color = self.bg_color, use_pca = use_pca) | |
output_wo_hand = self.avatar_net.render_wo_hand(items, bg_color = self.bg_color, use_pca = use_pca) | |
mask_output = self.avatar_net.render_mask(items, bg_color = self.bg_color, use_pca = use_pca) | |
# do some postprocess | |
rgb_map_wo_hand = output_wo_hand['rgb_map'] | |
full_body_mask = mask_output['full_body_rgb_map'] | |
full_body_mask.clip_(0., 1.) | |
full_body_mask = (full_body_mask * 255).to(torch.uint8) | |
hand_only_mask = mask_output['hand_only_rgb_map'] | |
hand_only_mask.clip_(0., 1.) | |
hand_only_mask = (hand_only_mask * 255).to(torch.uint8) | |
# build the covered hand mask and the hand visualbility flag | |
body_red_mask = (mask_output['full_body_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['full_body_rgb_map'].device)) | |
body_red_mask = (body_red_mask*body_red_mask).sum(dim=2) < 0.01 # need save | |
hand_red_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['hand_only_rgb_map'].device)) | |
hand_red_mask = (hand_red_mask*hand_red_mask).sum(dim=2) < 0.0 | |
if_mask_r_hand = abs(body_red_mask.sum() - hand_red_mask.sum()) / hand_red_mask.sum() > 0.95 | |
if_mask_r_hand = if_mask_r_hand.cpu().numpy() | |
body_blue_mask = (mask_output['full_body_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['full_body_rgb_map'].device)) | |
body_blue_mask = (body_blue_mask*body_blue_mask).sum(dim=2) < 0.01 # need save | |
hand_blue_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['hand_only_rgb_map'].device)) | |
hand_blue_mask = (hand_blue_mask*hand_blue_mask).sum(dim=2) < 0.01 | |
if_mask_l_hand = abs(body_blue_mask.sum() - hand_blue_mask.sum()) / hand_blue_mask.sum() > 0.95 | |
if_mask_l_hand = if_mask_l_hand.cpu().numpy() | |
# 保存左右手被遮挡部分的mask | |
red_mask = hand_red_mask ^ (hand_red_mask & body_red_mask) | |
blue_mask = hand_blue_mask ^ (hand_blue_mask & body_blue_mask) | |
all_mask = red_mask | blue_mask | |
all_mask = (all_mask * 255).to(torch.uint8) | |
r_hand_mask = (body_red_mask * 255).to(torch.uint8) | |
l_hand_mask = (body_blue_mask * 255).to(torch.uint8) | |
hand_visual = [if_mask_r_hand, if_mask_l_hand] | |
# build sleeve mask | |
mask = (r_hand_mask>128) | (l_hand_mask>128)| (all_mask>128) | |
mask = mask.cpu().numpy().astype(np.uint8) | |
# 定义一个结构元素,可以调整其大小以改变膨胀的程度 | |
kernel = np.ones((5, 5), np.uint8) | |
# 应用膨胀操作 | |
mask = cv.dilate(mask, kernel, iterations=3) | |
mask = torch.tensor(mask).to(self.device) | |
left_hand_mask = mask_output['left_hand_rgb_map'] | |
left_hand_mask.clip_(0., 1.) | |
# non white part is mask | |
left_hand_mask = (torch.tensor([1., 1., 1.], device = left_hand_mask.device) - left_hand_mask) | |
left_hand_mask = (left_hand_mask*left_hand_mask).sum(dim=2) > 0.01 | |
# dele two hand mask | |
left_hand_mask = left_hand_mask & ~mask | |
right_hand_mask = mask_output['right_hand_rgb_map'] | |
right_hand_mask.clip_(0., 1.) | |
right_hand_mask = (torch.tensor([1., 1., 1.], device = right_hand_mask.device) - right_hand_mask) | |
right_hand_mask = (right_hand_mask*right_hand_mask).sum(dim=2) > 0.01 | |
right_hand_mask = right_hand_mask & ~mask | |
left_sleeve_mask = (left_hand_mask * 255).to(torch.uint8) | |
right_sleeve_mask = (right_hand_mask * 255).to(torch.uint8) | |
# 利用 r_hand_mask 和 l_hand_mask,将wo_hand图像中的mask部分覆盖rgb_map | |
rgb_map = output['rgb_map'] | |
rgb_map.clip_(0., 1.) | |
rgb_map = (rgb_map * 255).to(torch.uint8).cpu().numpy() | |
rgb_map_wo_hand = output_wo_hand['rgb_map'] | |
rgb_map_wo_hand.clip_(0., 1.) | |
rgb_map_wo_hand = (rgb_map_wo_hand * 255).to(torch.uint8).cpu().numpy() | |
r_mask = (r_hand_mask>128).cpu().numpy() | |
l_mask = (l_hand_mask>128).cpu().numpy() | |
mask = r_mask | l_mask | |
mask = mask.astype(np.uint8) | |
# 定义一个结构元素,可以调整其大小以改变膨胀的程度 | |
kernel = np.ones((5, 5), np.uint8) | |
# 应用膨胀操作 | |
mask = cv.dilate(mask, kernel, iterations=3) | |
mask = mask.astype(np.bool_) | |
mask = np.expand_dims(mask, axis=2) | |
# get the final rgb_map without hand | |
mix = rgb_map_wo_hand.copy() * mask + rgb_map * ~mask | |
torso_map = output['torso_map'][:, :, 0] | |
torso_map.clip_(0., 1.) | |
torso_map = (torso_map * 255).to(torch.uint8).cpu().numpy() | |
mask_map = output['mask_map'][:, :, 0] | |
mask_map.clip_(0., 1.) | |
mask_map = (mask_map * 255).to(torch.uint8).cpu().numpy() | |
output={ | |
# smpl | |
'betas':self.body_training_dataset.smpl_data['betas'].reshape([-1]).detach().cpu().numpy(), | |
'global_orient':item['global_orient'].reshape([-1]).detach().cpu().numpy(), | |
'transl':item['transl'].reshape([-1]).detach().cpu().numpy(), | |
'body_pose':item['body_pose'].reshape([-1]).detach().cpu().numpy(), | |
# camera | |
'extr':extr, | |
'intr':intr, | |
'img_h':img_h, | |
'img_w':img_w, | |
'camera_entry':camera_entry, | |
# rgb and masks | |
'rgb_map':rgb_map, | |
'rgb_map_wo_hand':mix, | |
'torso_map':torso_map, | |
'mask_map':mask_map, | |
'all_mask':all_mask, | |
'left_sleeve_mask':left_sleeve_mask, | |
'right_sleeve_mask':right_sleeve_mask, | |
'hand_visual':hand_visual | |
} | |
return output | |
def build_param(self,idx,body_output): | |
head_gaussians = load_gaussians_from_ply(self.cat.ref_head_gaussian_path) | |
head_pose, head_scale, id_coeff, exp_coeff = load_face_params(self.cat.ref_head_param_path) | |
body_head_blending_params = np.load(self.cat.body_head_blending_param_path) | |
smplx_to_faceverse = body_head_blending_params['smplx_to_faceverse'] | |
residual_transf = body_head_blending_params['residual_transf'] | |
head_color_bw = body_head_blending_params['head_color_bw'] | |
smpl = SmplTorch(model_file='./AnimatableGaussians/smpl_files/smplx/SMPLX_NEUTRAL.npz') | |
global_orient, transl, body_pose, betas = body_output['global_orient'], body_output['transl'], body_output['body_pose'], body_output['betas'] | |
smpl_verts, head_joint_transfmat = get_smpl_verts_and_head_transformation( | |
smpl, global_orient, body_pose, transl, betas) | |
livehead2livebody = calc_livehead2livebody(head_pose, smplx_to_faceverse, head_joint_transfmat) | |
total_transf = np.matmul(livehead2livebody, residual_transf) | |
cam, image_size = load_camera_data(body_output['camera_entry']) | |
cam_extr = np.matmul(cam[0], total_transf) | |
cam_intr = np.copy(cam[1]) | |
pts = np.copy(head_gaussians.xyz) | |
pts_proj = np.matmul(pts, cam_extr[:3, :3].transpose()) + cam_extr[:3, 3] | |
pts_proj = np.matmul(pts_proj, cam_intr.transpose()) | |
pts_proj = pts_proj / pts_proj[:, 2:] | |
pts_min, pts_max = np.min(pts_proj, axis=0), np.max(pts_proj, axis=0) | |
pts_center = (pts_min + pts_max) // 2 | |
pts_size = np.max(pts_max - pts_min) | |
tgt_pts_size = 350 | |
tgt_image_size = 512 | |
zoom_scale = tgt_pts_size / pts_size | |
cam_intr_zoom = np.copy(cam_intr) | |
cam_intr_zoom[:2] *= zoom_scale | |
cam_intr_zoom[0, 2] = cam_intr_zoom[0, 2] - (pts_center[0]*zoom_scale - tgt_image_size/2) | |
cam_intr_zoom[1, 2] = cam_intr_zoom[1, 2] - (pts_center[1]*zoom_scale - tgt_image_size/2) | |
output = { | |
'cam_extr':cam_extr, | |
'cam_intr':cam_intr, | |
'image_size':image_size, | |
'cam_intr_zoom':cam_intr_zoom, | |
'zoom_image_size':[tgt_image_size, tgt_image_size], | |
'zoom_center':pts_center, | |
'zoom_scale':zoom_scale, | |
'head_pose':head_pose, | |
'head_scale':head_scale, | |
'head_color_bw':head_color_bw, | |
} | |
return output | |
def build_head(self, idx, head_offline_rendering_param): | |
# head_offline_rendering_param = np.load(offline_rendering_param_fpath) | |
cam_extr = head_offline_rendering_param['cam_extr'] | |
cam_intr = head_offline_rendering_param['cam_intr'] | |
cam_intr_zoom = head_offline_rendering_param['cam_intr_zoom'] | |
zoom_image_size = head_offline_rendering_param['zoom_image_size'] | |
head_pose = head_offline_rendering_param['head_pose'] | |
head_scale = head_offline_rendering_param['head_scale'] | |
head_color_bw = head_offline_rendering_param['head_color_bw'] | |
zoom_scale = head_offline_rendering_param['zoom_scale'] | |
head_pose = torch.from_numpy(head_pose.astype(np.float32)).to(self.device) | |
head_color_bw = torch.from_numpy(head_color_bw.astype(np.float32)).to(self.device) | |
render_size = 512 | |
# data = self.head_dataloader[idx] | |
data = self.head_dataset[idx] | |
# add batch dim | |
data = {k: v.unsqueeze(0) for k, v in data.items() if isinstance(v, torch.Tensor)} | |
# print(data.keys()) | |
new_gs_camera_param_dict = self.prepare_camera_data_for_gs_rendering(cam_extr, cam_intr_zoom, render_size, render_size) | |
for k in new_gs_camera_param_dict.keys(): | |
if isinstance(new_gs_camera_param_dict[k], torch.Tensor): | |
new_gs_camera_param_dict[k] = new_gs_camera_param_dict[k].unsqueeze(0).to(self.device) | |
new_gs_camera_param_dict['pose'] = head_pose.unsqueeze(0).to(self.device) | |
to_cuda = ['images', 'intrinsics', 'extrinsics', 'world_view_transform', 'projection_matrix', 'full_proj_transform', 'camera_center', | |
'pose', 'scale', 'exp_coeff', 'pose_code'] | |
for data_item in to_cuda: | |
data[data_item] = data[data_item].to(device=self.device) | |
data.update(new_gs_camera_param_dict) | |
with torch.no_grad(): | |
data = self.gaussianhead.generate(data) | |
data = self.head_camera.render_gaussian(data, 512) | |
render_images = data['render_images'] | |
supres_images = self.supres(render_images) | |
data['supres_images'] = supres_images | |
data['bg_color'] = torch.zeros([1, 32], device=self.device, dtype=torch.float32) | |
data['color_bk'] = data.pop('color') | |
data['color'] = torch.ones_like(data['color_bk']) * head_color_bw.reshape([1, -1, 1]) * 2.0 | |
data['color'][:, :, 1] = 1 | |
data['color'] = torch.clamp(data['color'], 0., 1.) | |
data = self.head_camera.render_gaussian(data, render_size) | |
render_bw = data['render_images'][:, :3, :, :] | |
data['color'] = data.pop('color_bk') | |
data['render_bw'] = render_bw | |
supres_image = data['supres_images'][0].permute(1, 2, 0).detach().cpu().numpy() | |
supres_image = (supres_image * 255).astype(np.uint8)[:,:,::-1] | |
render_bw = data['render_bw'][0].permute(1, 2, 0).detach().cpu().numpy() | |
render_bw = np.clip(render_bw * 255, 0, 255).astype(np.uint8)[:,:,::-1] | |
render_bw = cv2.resize(render_bw, (supres_image.shape[0], supres_image.shape[1])) | |
output = { | |
'render_images':supres_image, | |
'render_bw':render_bw, | |
} | |
return output | |
def prepare_camera_data_for_gs_rendering(self, extrinsic, intrinsic, original_resolution, new_resolution): | |
extrinsic = np.copy(extrinsic) | |
intrinsic = np.copy(intrinsic) | |
new_intrinsic = np.copy(intrinsic) | |
new_intrinsic[:2] *= new_resolution / original_resolution | |
intrinsic[0, 0] = intrinsic[0, 0] * 2 / original_resolution | |
intrinsic[0, 2] = intrinsic[1, 2] * 2 / original_resolution - 1 | |
intrinsic[1, 1] = intrinsic[1, 1] * 2 / original_resolution | |
intrinsic[1, 2] = intrinsic[1, 2] * 2 / original_resolution - 1 | |
fovx = 2 * math.atan(1 / intrinsic[0, 0]) | |
fovy = 2 * math.atan(1 / intrinsic[1, 1]) | |
world_view_transform = torch.tensor(getWorld2View2(extrinsic[:3, :3].transpose(), extrinsic[:3, 3])).transpose(0, 1) | |
projection_matrix = getProjectionMatrix( | |
znear=0.01, zfar=100, fovX=None, fovY=None, | |
K=new_intrinsic, img_h=new_resolution, img_w=new_resolution).transpose(0,1) | |
full_proj_transform = (world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))).squeeze(0) | |
camera_center = world_view_transform.inverse()[3, :3] | |
c2w = np.linalg.inv(extrinsic) | |
viewdir = np.matmul(c2w[:3, :3], np.array([0, 0, -1], np.float32).reshape([3, 1])).reshape([-1]) | |
viewdir = torch.from_numpy(viewdir.astype(np.float32)) | |
return { | |
'extrinsics': torch.from_numpy(extrinsic.astype(np.float32)), | |
'intrinsics': torch.from_numpy(intrinsic.astype(np.float32)), | |
'viewdir': viewdir, | |
'fovx': torch.Tensor([fovx]), | |
'fovy': torch.Tensor([fovy]), | |
'world_view_transform': world_view_transform, | |
'projection_matrix': projection_matrix, | |
'full_proj_transform': full_proj_transform, | |
'camera_center': camera_center | |
} | |
def stich_head_body(self,body_rendering,body_mask,body_torso_mask,head_rendering,head_blending_mask,body_head_blending_params,head_offline_rendering_param): | |
color_transfer = body_head_blending_params['color_transfer'] | |
zoom_image_size = head_offline_rendering_param['zoom_image_size'] | |
zoom_center = head_offline_rendering_param['zoom_center'] | |
zoom_scale = head_offline_rendering_param['zoom_scale'] | |
if len(body_mask.shape) == 3: | |
body_mask = body_mask[:, :, 0] | |
if len(body_torso_mask.shape) == 3: | |
body_torso_mask = body_torso_mask[:, :, 0] | |
head_rendering = cv2.resize(head_rendering, (int(zoom_image_size[0]), int(zoom_image_size[1]))) | |
head_blending_mask = cv2.resize(head_blending_mask, (int(zoom_image_size[0]), int(zoom_image_size[1]))) | |
head_mask = head_blending_mask[:, :, 1] | |
head_blending_mask = head_blending_mask[:, :, 0] | |
head_blending_mask = soften_blending_mask(head_blending_mask, head_mask) | |
pasteback_center = zoom_center | |
pasteback_scale = zoom_scale | |
head_rendering_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_rendering, [body_rendering.shape[1], body_rendering.shape[0]]) | |
head_blending_mask_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_blending_mask, [body_rendering.shape[1], body_rendering.shape[0]]) | |
head_mask_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_mask, [body_rendering.shape[1], body_rendering.shape[0]]) | |
# head_blending_mask_back *= body_mask | |
# head_mask_back *= body_mask | |
head_blending_mask_back = head_blending_mask_back * (1 - body_torso_mask) | |
head_rendering_back_shape = head_rendering_back.shape | |
head_rendering_back = np.matmul(head_rendering_back.reshape(-1, 3), color_transfer[:3, :3].transpose()) + color_transfer[:3, 3][None] | |
head_rendering_back = head_rendering_back.reshape(head_rendering_back_shape) | |
head_rendering_back = head_rendering_back * head_mask_back[:, :, None] + (1 - head_mask_back[:, :, None]) | |
body_rendering = body_rendering * (1 - head_blending_mask_back[:, :, None]) + head_rendering_back * head_blending_mask_back[:, :, None] | |
return np.uint8(np.clip(body_rendering, 0, 1)*255) | |
# def build_hand(betas,poses,camera): | |
# # build hand here | |
# output = { | |
# 'hand_render':render, | |
# 'hand_mask':mask, | |
# } | |
# return output | |
if __name__ == '__main__': | |
conf = OmegaConf.load('configs/example.yaml') | |
avatar = Avatar(conf) | |
avatar.build_dataset() | |
# avatar.test_body() | |
avatar.render_all() | |