full_gaussian_avatar / avatar_generator.py
pengc02's picture
test
42fd375
raw
history blame
28.8 kB
from calendar import c
import os
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
import yaml
import shutil
import collections
import torch
import torch.utils.data
import torch.nn.functional as F
import numpy as np
import cv2 as cv
import glob
import datetime
import trimesh
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import importlib
# import config
from omegaconf import OmegaConf
import json
import math
import cv2
# AnimatableGaussians part
from AnimatableGaussians.network.lpips import LPIPS
from AnimatableGaussians.dataset.dataset_pose import PoseDataset
import AnimatableGaussians.utils.net_util as net_util
# import AnimatableGaussians.utils.visualize_util as visualize_util
from AnimatableGaussians.utils.camera_dir import get_camera_dir
from AnimatableGaussians.utils.renderer import Renderer
from AnimatableGaussians.utils.net_util import to_cuda
from AnimatableGaussians.utils.obj_io import save_mesh_as_ply
from AnimatableGaussians.gaussians.obj_io import save_gaussians_as_ply
import AnimatableGaussians.config as ag_config
# Gaussian-Head-Avatar part
from GHA.config.config import config_reenactment
from GHA.lib.dataset.Dataset import ReenactmentDataset
from GHA.lib.dataset.DataLoaderX import DataLoaderX
from GHA.lib.module.GaussianHeadModule import GaussianHeadModule
from GHA.lib.module.SuperResolutionModule import SuperResolutionModule
from GHA.lib.module.CameraModule import CameraModule
from GHA.lib.recorder.Recorder import ReenactmentRecorder
from GHA.lib.apps.Reenactment import Reenactment
from GHA.lib.utils.graphics_utils import getWorld2View2, getProjectionMatrix
# cat utils
from calc_offline_rendering_param import calc_offline_rendering_param
from calc_offline_rendering_param import load_camera_data
from render_utils.lib.networks.smpl_torch import SmplTorch
from render_utils.lib.utils.gaussian_np_utils import load_gaussians_from_ply
from render_utils.stitch_body_and_head import load_body_params, load_face_params, get_smpl_verts_and_head_transformation, calc_livehead2livebody
from render_utils.stitch_funcs import soften_blending_mask,paste_back_with_linear_interp
import ipdb
class Avatar:
def __init__(self, config):
self.config = config
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# animateble gaussians part init
self.body = config.animatablegaussians
self.body.mode = 'test'
ag_config.set_opt(self.body)
avatar_module = self.body['model'].get('module', 'AnimatableGaussians.network.avatar')
print('Import AvatarNet from %s' % avatar_module)
AvatarNet = importlib.import_module(avatar_module).AvatarNet
self.avatar_net = AvatarNet(self.body.model).to(self.device)
self.random_bg_color = self.body['train'].get('random_bg_color', True)
self.bg_color = (1., 1., 1.)
self.bg_color_cuda = torch.from_numpy(np.asarray(self.bg_color)).to(torch.float32).to(self.device)
self.loss_weight = self.body['train']['loss_weight']
self.finetune_color = self.body['train']['finetune_color']
print('# Parameter number of AvatarNet is %d' % (sum([p.numel() for p in self.avatar_net.parameters()])))
# gaussian head avatar part init
self.head = config.gha
# cat utils part init
self.cat = config.cat
def build_dataset(self, body_pose_path=None, face_exp_path=None):
# build body_dataset
if body_pose_path is not None:
self.body['test']['pose_data']['data_path'] = body_pose_path
body_pose = np.load(body_pose_path, allow_pickle = True)
# print('body_pose keys:', body_pose.keys())
# print('body_pose shape:', body_pose['poses'].shape)
self.body['test']['pose_data']['frame_range'] = [0,body_pose['poses'].shape[0]]
dataset_module = self.body.get('dataset', 'MvRgbDatasetAvatarReX')
MvRgbDataset = importlib.import_module('AnimatableGaussians.dataset.dataset_mv_rgb').__getattribute__(dataset_module)
self.body_training_dataset = MvRgbDataset(**self.body['train']['data'], training = False)
if self.body['test'].get('n_pca', -1) >= 1:
self.body_training_dataset.compute_pca(n_components = self.body['test']['n_pca'])
if 'pose_data' in self.body.test:
testing_dataset = PoseDataset(**self.body['test']['pose_data'], smpl_shape = self.body_training_dataset.smpl_data['betas'][0])
dataset_name = testing_dataset.dataset_name
seq_name = testing_dataset.seq_name
else:
# throw an error
raise ValueError('No pose data in test config')
self.body_dataset = testing_dataset
iter_idx = self.load_ckpt(self.body['test']['prev_ckpt'], False)[1]
self.head_config = config_reenactment()
self.head_config.load(self.head.config_path)
if face_exp_path is not None:
self.head_config.cfg.dataset.exp_path = face_exp_path
self.head_config.freeze()
self.head_config = self.head_config.get_cfg()
# build face dataset
self.head_dataset = ReenactmentDataset(self.head_config.dataset)
self.head_dataloader = DataLoaderX(self.head_dataset, batch_size=1, shuffle=False, pin_memory=True)
# device = torch.device('cuda:%d' % cfg.gpu_id)
gaussianhead_state_dict = torch.load(self.head_config.load_gaussianhead_checkpoint, map_location=lambda storage, loc: storage)
self.gaussianhead = GaussianHeadModule(self.head_config.gaussianheadmodule,
xyz=gaussianhead_state_dict['xyz'],
feature=gaussianhead_state_dict['feature'],
landmarks_3d_neutral=gaussianhead_state_dict['landmarks_3d_neutral']).to(self.device)
self.gaussianhead.load_state_dict(gaussianhead_state_dict)
self.supres = SuperResolutionModule(self.head_config.supresmodule).to(self.device)
self.supres.load_state_dict(torch.load(self.head_config.load_supres_checkpoint, map_location=lambda storage, loc: storage))
self.head_camera = CameraModule()
self.head_recorder = ReenactmentRecorder(self.head_config.recorder)
def render_all(self):
# len = short one
lenth = min(len(self.body_dataset), len(self.head_dataloader))
# build a tqdm bar
for idx in tqdm(range(lenth)):
self.reder_frame(idx)
# for idx in range(lenth):
# self.reder_frame(idx)
def reder_frame(self, idx):
# 渲染身体和各种mask
body_output = self.build_body(idx)
# 计算头的渲染参数
head_param = self.build_param(idx,body_output)
# 渲染头
head_output = self.build_head(idx, head_param)
# 把头和身体拼接起来
body_rendering= body_output['rgb_map_wo_hand'].astype(np.float32) / 255.0
# save body_rendering
# cv.imwrite('./output' + '/body_rgb_%08d.jpg' % idx, (body_output['rgb_map']).astype(np.uint8))
# cv.imwrite('./output' + '/body_rgb_wo_hand%08d.jpg' % idx, (body_output['rgb_map_wo_hand']).astype(np.uint8))
body_mask = body_output['mask_map'].astype(np.float32) / 255.0
body_torso_mask = body_output['torso_map'].astype(np.float32) / 255.0
head_rendering = head_output['render_images'].astype(np.float32) / 255.0
head_blending_mask = head_output['render_bw'].astype(np.float32) / 255.0
body_head_blending_params = np.load(self.cat.body_head_blending_param_path)
head_offline_rendering_param = head_param
stitch_output = self.stich_head_body(body_rendering, body_mask, body_torso_mask, head_rendering, head_blending_mask, body_head_blending_params, head_offline_rendering_param)
cv.imwrite('./output' + '/%08d.jpg' % idx, stitch_output)
# 渲染手和手的mask
# 把手拼上去
return stitch_output
pass
def load_ckpt(self, path, load_optm = True):
print('Loading networks from ', path + '/net.pt')
net_dict = torch.load(path + '/net.pt')
if 'avatar_net' in net_dict:
self.avatar_net.load_state_dict(net_dict['avatar_net'])
else:
print('[WARNING] Cannot find "avatar_net" from the network checkpoint!')
epoch_idx = net_dict['epoch_idx']
iter_idx = net_dict['iter_idx']
# if load_optm and os.path.exists(path + '/optm.pt'):
# print('Loading optimizers from ', path + '/optm.pt')
# optm_dict = torch.load(path + '/optm.pt')
# if 'avatar_net' in optm_dict:
# self.optm.load_state_dict(optm_dict['avatar_net'])
# else:
# print('[WARNING] Cannot find "avatar_net" from the optimizer checkpoint!')
return epoch_idx, iter_idx
@torch.no_grad()
def build_body(self,idx):
self.avatar_net.eval()
geo_renderer = None
item_0 = self.body_dataset.getitem(0, training = False)
object_center = item_0['live_bounds'].mean(0)
global_orient = item_0['global_orient'].cpu().numpy() if isinstance(item_0['global_orient'], torch.Tensor) else item_0['global_orient']
use_pca = self.body['test'].get('n_pca', -1) >= 1
# set x and z to 0
global_orient[0] = 0
global_orient[2] = 0
global_orient = cv.Rodrigues(global_orient)[0]
time_start = torch.cuda.Event(enable_timing = True)
time_start_all = torch.cuda.Event(enable_timing = True)
time_end = torch.cuda.Event(enable_timing = True)
if self.body['test'].get('fix_hand', False):
self.avatar_net.generate_mean_hands()
img_scale = self.body['test'].get('img_scale', 1.0)
view_setting = self.body['test'].get('view_setting', 'free')
extr, intr, img_h, img_w = get_camera_dir(idx, object_center, global_orient, img_scale, view_setting)
w2c = extr
c2w = np.linalg.inv(w2c)
pos = c2w[:3, 3]
rot = c2w[:3, :3]
serializable_array_2d = [x.tolist() for x in rot]
camera_entry = {
'width': int(img_w),
'height': int(img_h),
'position': pos.tolist(),
'rotation': serializable_array_2d,
'fy': float(intr[1, 1]),
'fx': float(intr[0, 0]),
}
getitem_func = self.body_dataset.getitem_fast if hasattr(self.body_dataset, 'getitem_fast') else self.body_dataset.getitem
item = getitem_func(
idx,
training = False,
extr = extr,
intr = intr,
img_w = img_w,
img_h = img_h
)
items = to_cuda(item, add_batch = False)
if 'smpl_pos_map' not in items:
self.avatar_net.get_pose_map(items)
# pca
if use_pca:
mask = self.body_training_dataset.pos_map_mask
live_pos_map = items['smpl_pos_map'].permute(1, 2, 0).cpu().numpy()
front_live_pos_map, back_live_pos_map = np.split(live_pos_map, [3], 2)
pose_conds = front_live_pos_map[mask]
new_pose_conds = self.body_training_dataset.transform_pca(pose_conds, sigma_pca = float(self.body['test'].get('sigma_pca', 2.)))
front_live_pos_map[mask] = new_pose_conds
live_pos_map = np.concatenate([front_live_pos_map, back_live_pos_map], 2)
items.update({
'smpl_pos_map_pca': torch.from_numpy(live_pos_map).to(self.device).permute(2, 0, 1)
})
# print items
# print(items.keys())
# print(items.values())
# exit()
# get render result
output = self.avatar_net.render(items, bg_color = self.bg_color, use_pca = use_pca)
output_wo_hand = self.avatar_net.render_wo_hand(items, bg_color = self.bg_color, use_pca = use_pca)
mask_output = self.avatar_net.render_mask(items, bg_color = self.bg_color, use_pca = use_pca)
# do some postprocess
rgb_map_wo_hand = output_wo_hand['rgb_map']
full_body_mask = mask_output['full_body_rgb_map']
full_body_mask.clip_(0., 1.)
full_body_mask = (full_body_mask * 255).to(torch.uint8)
hand_only_mask = mask_output['hand_only_rgb_map']
hand_only_mask.clip_(0., 1.)
hand_only_mask = (hand_only_mask * 255).to(torch.uint8)
# build the covered hand mask and the hand visualbility flag
body_red_mask = (mask_output['full_body_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['full_body_rgb_map'].device))
body_red_mask = (body_red_mask*body_red_mask).sum(dim=2) < 0.01 # need save
hand_red_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['hand_only_rgb_map'].device))
hand_red_mask = (hand_red_mask*hand_red_mask).sum(dim=2) < 0.0
if_mask_r_hand = abs(body_red_mask.sum() - hand_red_mask.sum()) / hand_red_mask.sum() > 0.95
if_mask_r_hand = if_mask_r_hand.cpu().numpy()
body_blue_mask = (mask_output['full_body_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['full_body_rgb_map'].device))
body_blue_mask = (body_blue_mask*body_blue_mask).sum(dim=2) < 0.01 # need save
hand_blue_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['hand_only_rgb_map'].device))
hand_blue_mask = (hand_blue_mask*hand_blue_mask).sum(dim=2) < 0.01
if_mask_l_hand = abs(body_blue_mask.sum() - hand_blue_mask.sum()) / hand_blue_mask.sum() > 0.95
if_mask_l_hand = if_mask_l_hand.cpu().numpy()
# 保存左右手被遮挡部分的mask
red_mask = hand_red_mask ^ (hand_red_mask & body_red_mask)
blue_mask = hand_blue_mask ^ (hand_blue_mask & body_blue_mask)
all_mask = red_mask | blue_mask
all_mask = (all_mask * 255).to(torch.uint8)
r_hand_mask = (body_red_mask * 255).to(torch.uint8)
l_hand_mask = (body_blue_mask * 255).to(torch.uint8)
hand_visual = [if_mask_r_hand, if_mask_l_hand]
# build sleeve mask
mask = (r_hand_mask>128) | (l_hand_mask>128)| (all_mask>128)
mask = mask.cpu().numpy().astype(np.uint8)
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
kernel = np.ones((5, 5), np.uint8)
# 应用膨胀操作
mask = cv.dilate(mask, kernel, iterations=3)
mask = torch.tensor(mask).to(self.device)
left_hand_mask = mask_output['left_hand_rgb_map']
left_hand_mask.clip_(0., 1.)
# non white part is mask
left_hand_mask = (torch.tensor([1., 1., 1.], device = left_hand_mask.device) - left_hand_mask)
left_hand_mask = (left_hand_mask*left_hand_mask).sum(dim=2) > 0.01
# dele two hand mask
left_hand_mask = left_hand_mask & ~mask
right_hand_mask = mask_output['right_hand_rgb_map']
right_hand_mask.clip_(0., 1.)
right_hand_mask = (torch.tensor([1., 1., 1.], device = right_hand_mask.device) - right_hand_mask)
right_hand_mask = (right_hand_mask*right_hand_mask).sum(dim=2) > 0.01
right_hand_mask = right_hand_mask & ~mask
left_sleeve_mask = (left_hand_mask * 255).to(torch.uint8)
right_sleeve_mask = (right_hand_mask * 255).to(torch.uint8)
# 利用 r_hand_mask 和 l_hand_mask,将wo_hand图像中的mask部分覆盖rgb_map
rgb_map = output['rgb_map']
rgb_map.clip_(0., 1.)
rgb_map = (rgb_map * 255).to(torch.uint8).cpu().numpy()
rgb_map_wo_hand = output_wo_hand['rgb_map']
rgb_map_wo_hand.clip_(0., 1.)
rgb_map_wo_hand = (rgb_map_wo_hand * 255).to(torch.uint8).cpu().numpy()
r_mask = (r_hand_mask>128).cpu().numpy()
l_mask = (l_hand_mask>128).cpu().numpy()
mask = r_mask | l_mask
mask = mask.astype(np.uint8)
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
kernel = np.ones((5, 5), np.uint8)
# 应用膨胀操作
mask = cv.dilate(mask, kernel, iterations=3)
mask = mask.astype(np.bool_)
mask = np.expand_dims(mask, axis=2)
# get the final rgb_map without hand
mix = rgb_map_wo_hand.copy() * mask + rgb_map * ~mask
torso_map = output['torso_map'][:, :, 0]
torso_map.clip_(0., 1.)
torso_map = (torso_map * 255).to(torch.uint8).cpu().numpy()
mask_map = output['mask_map'][:, :, 0]
mask_map.clip_(0., 1.)
mask_map = (mask_map * 255).to(torch.uint8).cpu().numpy()
output={
# smpl
'betas':self.body_training_dataset.smpl_data['betas'].reshape([-1]).detach().cpu().numpy(),
'global_orient':item['global_orient'].reshape([-1]).detach().cpu().numpy(),
'transl':item['transl'].reshape([-1]).detach().cpu().numpy(),
'body_pose':item['body_pose'].reshape([-1]).detach().cpu().numpy(),
# camera
'extr':extr,
'intr':intr,
'img_h':img_h,
'img_w':img_w,
'camera_entry':camera_entry,
# rgb and masks
'rgb_map':rgb_map,
'rgb_map_wo_hand':mix,
'torso_map':torso_map,
'mask_map':mask_map,
'all_mask':all_mask,
'left_sleeve_mask':left_sleeve_mask,
'right_sleeve_mask':right_sleeve_mask,
'hand_visual':hand_visual
}
return output
def build_param(self,idx,body_output):
head_gaussians = load_gaussians_from_ply(self.cat.ref_head_gaussian_path)
head_pose, head_scale, id_coeff, exp_coeff = load_face_params(self.cat.ref_head_param_path)
body_head_blending_params = np.load(self.cat.body_head_blending_param_path)
smplx_to_faceverse = body_head_blending_params['smplx_to_faceverse']
residual_transf = body_head_blending_params['residual_transf']
head_color_bw = body_head_blending_params['head_color_bw']
smpl = SmplTorch(model_file='./AnimatableGaussians/smpl_files/smplx/SMPLX_NEUTRAL.npz')
global_orient, transl, body_pose, betas = body_output['global_orient'], body_output['transl'], body_output['body_pose'], body_output['betas']
smpl_verts, head_joint_transfmat = get_smpl_verts_and_head_transformation(
smpl, global_orient, body_pose, transl, betas)
livehead2livebody = calc_livehead2livebody(head_pose, smplx_to_faceverse, head_joint_transfmat)
total_transf = np.matmul(livehead2livebody, residual_transf)
cam, image_size = load_camera_data(body_output['camera_entry'])
cam_extr = np.matmul(cam[0], total_transf)
cam_intr = np.copy(cam[1])
pts = np.copy(head_gaussians.xyz)
pts_proj = np.matmul(pts, cam_extr[:3, :3].transpose()) + cam_extr[:3, 3]
pts_proj = np.matmul(pts_proj, cam_intr.transpose())
pts_proj = pts_proj / pts_proj[:, 2:]
pts_min, pts_max = np.min(pts_proj, axis=0), np.max(pts_proj, axis=0)
pts_center = (pts_min + pts_max) // 2
pts_size = np.max(pts_max - pts_min)
tgt_pts_size = 350
tgt_image_size = 512
zoom_scale = tgt_pts_size / pts_size
cam_intr_zoom = np.copy(cam_intr)
cam_intr_zoom[:2] *= zoom_scale
cam_intr_zoom[0, 2] = cam_intr_zoom[0, 2] - (pts_center[0]*zoom_scale - tgt_image_size/2)
cam_intr_zoom[1, 2] = cam_intr_zoom[1, 2] - (pts_center[1]*zoom_scale - tgt_image_size/2)
output = {
'cam_extr':cam_extr,
'cam_intr':cam_intr,
'image_size':image_size,
'cam_intr_zoom':cam_intr_zoom,
'zoom_image_size':[tgt_image_size, tgt_image_size],
'zoom_center':pts_center,
'zoom_scale':zoom_scale,
'head_pose':head_pose,
'head_scale':head_scale,
'head_color_bw':head_color_bw,
}
return output
def build_head(self, idx, head_offline_rendering_param):
# head_offline_rendering_param = np.load(offline_rendering_param_fpath)
cam_extr = head_offline_rendering_param['cam_extr']
cam_intr = head_offline_rendering_param['cam_intr']
cam_intr_zoom = head_offline_rendering_param['cam_intr_zoom']
zoom_image_size = head_offline_rendering_param['zoom_image_size']
head_pose = head_offline_rendering_param['head_pose']
head_scale = head_offline_rendering_param['head_scale']
head_color_bw = head_offline_rendering_param['head_color_bw']
zoom_scale = head_offline_rendering_param['zoom_scale']
head_pose = torch.from_numpy(head_pose.astype(np.float32)).to(self.device)
head_color_bw = torch.from_numpy(head_color_bw.astype(np.float32)).to(self.device)
render_size = 512
# data = self.head_dataloader[idx]
data = self.head_dataset[idx]
# add batch dim
data = {k: v.unsqueeze(0) for k, v in data.items() if isinstance(v, torch.Tensor)}
# print(data.keys())
new_gs_camera_param_dict = self.prepare_camera_data_for_gs_rendering(cam_extr, cam_intr_zoom, render_size, render_size)
for k in new_gs_camera_param_dict.keys():
if isinstance(new_gs_camera_param_dict[k], torch.Tensor):
new_gs_camera_param_dict[k] = new_gs_camera_param_dict[k].unsqueeze(0).to(self.device)
new_gs_camera_param_dict['pose'] = head_pose.unsqueeze(0).to(self.device)
to_cuda = ['images', 'intrinsics', 'extrinsics', 'world_view_transform', 'projection_matrix', 'full_proj_transform', 'camera_center',
'pose', 'scale', 'exp_coeff', 'pose_code']
for data_item in to_cuda:
data[data_item] = data[data_item].to(device=self.device)
data.update(new_gs_camera_param_dict)
with torch.no_grad():
data = self.gaussianhead.generate(data)
data = self.head_camera.render_gaussian(data, 512)
render_images = data['render_images']
supres_images = self.supres(render_images)
data['supres_images'] = supres_images
data['bg_color'] = torch.zeros([1, 32], device=self.device, dtype=torch.float32)
data['color_bk'] = data.pop('color')
data['color'] = torch.ones_like(data['color_bk']) * head_color_bw.reshape([1, -1, 1]) * 2.0
data['color'][:, :, 1] = 1
data['color'] = torch.clamp(data['color'], 0., 1.)
data = self.head_camera.render_gaussian(data, render_size)
render_bw = data['render_images'][:, :3, :, :]
data['color'] = data.pop('color_bk')
data['render_bw'] = render_bw
supres_image = data['supres_images'][0].permute(1, 2, 0).detach().cpu().numpy()
supres_image = (supres_image * 255).astype(np.uint8)[:,:,::-1]
render_bw = data['render_bw'][0].permute(1, 2, 0).detach().cpu().numpy()
render_bw = np.clip(render_bw * 255, 0, 255).astype(np.uint8)[:,:,::-1]
render_bw = cv2.resize(render_bw, (supres_image.shape[0], supres_image.shape[1]))
output = {
'render_images':supres_image,
'render_bw':render_bw,
}
return output
def prepare_camera_data_for_gs_rendering(self, extrinsic, intrinsic, original_resolution, new_resolution):
extrinsic = np.copy(extrinsic)
intrinsic = np.copy(intrinsic)
new_intrinsic = np.copy(intrinsic)
new_intrinsic[:2] *= new_resolution / original_resolution
intrinsic[0, 0] = intrinsic[0, 0] * 2 / original_resolution
intrinsic[0, 2] = intrinsic[1, 2] * 2 / original_resolution - 1
intrinsic[1, 1] = intrinsic[1, 1] * 2 / original_resolution
intrinsic[1, 2] = intrinsic[1, 2] * 2 / original_resolution - 1
fovx = 2 * math.atan(1 / intrinsic[0, 0])
fovy = 2 * math.atan(1 / intrinsic[1, 1])
world_view_transform = torch.tensor(getWorld2View2(extrinsic[:3, :3].transpose(), extrinsic[:3, 3])).transpose(0, 1)
projection_matrix = getProjectionMatrix(
znear=0.01, zfar=100, fovX=None, fovY=None,
K=new_intrinsic, img_h=new_resolution, img_w=new_resolution).transpose(0,1)
full_proj_transform = (world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))).squeeze(0)
camera_center = world_view_transform.inverse()[3, :3]
c2w = np.linalg.inv(extrinsic)
viewdir = np.matmul(c2w[:3, :3], np.array([0, 0, -1], np.float32).reshape([3, 1])).reshape([-1])
viewdir = torch.from_numpy(viewdir.astype(np.float32))
return {
'extrinsics': torch.from_numpy(extrinsic.astype(np.float32)),
'intrinsics': torch.from_numpy(intrinsic.astype(np.float32)),
'viewdir': viewdir,
'fovx': torch.Tensor([fovx]),
'fovy': torch.Tensor([fovy]),
'world_view_transform': world_view_transform,
'projection_matrix': projection_matrix,
'full_proj_transform': full_proj_transform,
'camera_center': camera_center
}
def stich_head_body(self,body_rendering,body_mask,body_torso_mask,head_rendering,head_blending_mask,body_head_blending_params,head_offline_rendering_param):
color_transfer = body_head_blending_params['color_transfer']
zoom_image_size = head_offline_rendering_param['zoom_image_size']
zoom_center = head_offline_rendering_param['zoom_center']
zoom_scale = head_offline_rendering_param['zoom_scale']
if len(body_mask.shape) == 3:
body_mask = body_mask[:, :, 0]
if len(body_torso_mask.shape) == 3:
body_torso_mask = body_torso_mask[:, :, 0]
head_rendering = cv2.resize(head_rendering, (int(zoom_image_size[0]), int(zoom_image_size[1])))
head_blending_mask = cv2.resize(head_blending_mask, (int(zoom_image_size[0]), int(zoom_image_size[1])))
head_mask = head_blending_mask[:, :, 1]
head_blending_mask = head_blending_mask[:, :, 0]
head_blending_mask = soften_blending_mask(head_blending_mask, head_mask)
pasteback_center = zoom_center
pasteback_scale = zoom_scale
head_rendering_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_rendering, [body_rendering.shape[1], body_rendering.shape[0]])
head_blending_mask_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_blending_mask, [body_rendering.shape[1], body_rendering.shape[0]])
head_mask_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_mask, [body_rendering.shape[1], body_rendering.shape[0]])
# head_blending_mask_back *= body_mask
# head_mask_back *= body_mask
head_blending_mask_back = head_blending_mask_back * (1 - body_torso_mask)
head_rendering_back_shape = head_rendering_back.shape
head_rendering_back = np.matmul(head_rendering_back.reshape(-1, 3), color_transfer[:3, :3].transpose()) + color_transfer[:3, 3][None]
head_rendering_back = head_rendering_back.reshape(head_rendering_back_shape)
head_rendering_back = head_rendering_back * head_mask_back[:, :, None] + (1 - head_mask_back[:, :, None])
body_rendering = body_rendering * (1 - head_blending_mask_back[:, :, None]) + head_rendering_back * head_blending_mask_back[:, :, None]
return np.uint8(np.clip(body_rendering, 0, 1)*255)
# def build_hand(betas,poses,camera):
# # build hand here
# output = {
# 'hand_render':render,
# 'hand_mask':mask,
# }
# return output
if __name__ == '__main__':
conf = OmegaConf.load('configs/example.yaml')
avatar = Avatar(conf)
avatar.build_dataset()
# avatar.test_body()
avatar.render_all()