pengc02's picture
all
ec9a6bc
raw
history blame
9.78 kB
import os
import platform
import time
import yaml
import torch
import datetime
from torch.utils.tensorboard import SummaryWriter
import torch.utils.data
import numpy as np
import glob
import shutil
from utils.net_util import to_cuda
def worker_init_fn(worker_id): # set numpy's random seed
seed = torch.initial_seed()
seed = seed % (2 ** 32)
np.random.seed(seed + worker_id)
class BaseTrainer:
def __init__(self, opt):
self.opt = opt
self.dataset = None
self.network = None
self.net_dict = {}
self.optm_dict = {}
self.update_keys = None
self.lr_schedule_dict = {}
self.iter_idx = 0
self.epoch_idx = 0
self.iter_num = 9999999999
self.loss_weight = self.opt['train']['loss_weight']
@staticmethod
def load_pretrained(path, dict_):
data = torch.load(path)
for k in dict_:
if k in data:
print('# Loading %s...' % k)
dict_[k].load_state_dict(data[k])
else:
print('# %s not found!' % k)
return data.get('epoch_idx', None)
def load_ckpt(self, path, load_optm = True):
epoch_idx = self.load_pretrained(path + '/net.pt', self.net_dict)
if load_optm:
if os.path.exists(path + '/optm.pt'):
self.load_pretrained(path + '/optm.pt', self.optm_dict)
else:
print('# Optimizer not found!')
return epoch_idx
# @staticmethod
def save_trained(self, path, dict_):
data = {}
for k in dict_:
data[k] = dict_[k].state_dict()
data.update({
'epoch_idx': self.epoch_idx,
})
torch.save(data, path)
def save_ckpt(self, path, save_optm = True):
self.save_trained(path + '/net.pt', self.net_dict)
if save_optm:
self.save_trained(path + '/optm.pt', self.optm_dict)
def zero_grad(self):
if self.update_keys is None:
update_keys = self.optm_dict.keys()
else:
update_keys = self.update_keys
for k in update_keys:
self.optm_dict[k].zero_grad()
def step(self):
if self.update_keys is None:
update_keys = self.optm_dict.keys()
else:
update_keys = self.update_keys
for k in update_keys:
self.optm_dict[k].step()
def update_lr(self, iter_idx):
lr_dict = {}
if self.update_keys is None:
update_keys = self.optm_dict.keys()
else:
update_keys = self.update_keys
for k in update_keys:
lr = self.lr_schedule_dict[k].get_learning_rate(iter_idx)
for param_group in self.optm_dict[k].param_groups:
param_group['lr'] = lr
lr_dict[k] = lr
return lr_dict
def set_dataset(self, dataset):
self.dataset = dataset
def set_network(self, network):
self.network = network
def set_net_dict(self, net_dict):
self.net_dict = net_dict
def set_optm_dict(self, optm_dict):
self.optm_dict = optm_dict
def set_update_keys(self, update_keys):
self.update_keys = update_keys
def set_lr_schedule_dict(self, lr_schedule_dict):
self.lr_schedule_dict = lr_schedule_dict
def set_train(self, flag = True):
if flag:
for k, net in self.net_dict.items():
if k in self.update_keys:
net.train()
else:
net.eval()
else:
for k, net in self.net_dict.items():
net.eval()
def train(self):
# log
os.makedirs(self.opt['train']['net_ckpt_dir'], exist_ok = True)
log_dir = self.opt['train']['net_ckpt_dir'] + '/' + datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
os.makedirs(log_dir, exist_ok = True)
writer = SummaryWriter(log_dir)
yaml.dump(self.opt, open(log_dir + '/config_bk.yaml', 'w'), sort_keys = False)
self.set_train()
self.dataset.training = True
batch_size = self.opt['train'].get('batch_size', 1)
num_workers = self.opt['train'].get('num_workers', 0)
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size = batch_size,
shuffle = True,
num_workers = num_workers,
worker_init_fn = worker_init_fn,
drop_last = True)
self.batch_num = len(self.dataset) // batch_size
if self.opt['train'].get('save_init_ckpt', False) and self.opt['train'].get('start_epoch', 0) == 0:
init_folder = self.opt['train']['net_ckpt_dir'] + '/init_ckpt'
if not os.path.exists(init_folder) or self.opt['train']['start_epoch'] == 0:
os.makedirs(init_folder, exist_ok = True)
self.save_ckpt(init_folder, False)
else:
print('# Init checkpoint has been saved!')
if self.opt['train']['prev_ckpt'] is not None:
start_epoch = self.load_ckpt(self.opt['train']['prev_ckpt']) + 1
else:
prev_ckpt_path = self.opt['train']['net_ckpt_dir'] + '/epoch_latest'
if os.path.exists(prev_ckpt_path):
start_epoch = self.load_ckpt(prev_ckpt_path) + 1
else:
start_epoch = None
if start_epoch is None:
start_epoch = self.opt['train'].get('start_epoch', 0)
end_epoch = self.opt['train'].get('end_epoch', 999)
forward_one_pass = self.forward_one_pass
for epoch_idx in range(start_epoch, end_epoch):
self.epoch_idx = epoch_idx
self.update_config_before_epoch(epoch_idx)
epoch_losses = dict()
time0 = time.time()
for batch_idx, items in enumerate(dataloader):
iter_idx = batch_idx + self.batch_num * epoch_idx
self.iter_idx = iter_idx
lr_dict = self.update_lr(iter_idx)
items = to_cuda(items)
loss, batch_losses = forward_one_pass(items)
# self.zero_grad()
# loss.backward()
# self.step()
# record batch loss
log_info = 'epoch %d, batch %d, ' % (epoch_idx, batch_idx)
log_info += 'lr: '
for k in lr_dict.keys():
log_info += '%s %e, ' % (k, lr_dict[k])
for key in batch_losses.keys():
log_info = log_info + ('%s: %f, ' % (key, batch_losses[key]))
writer.add_scalar('%s/Batch' % key, batch_losses[key], iter_idx)
if key in epoch_losses:
epoch_losses[key] += batch_losses[key]
else:
epoch_losses[key] = batch_losses[key]
print(log_info)
with open(os.path.join(log_dir, 'loss.txt'), 'a') as fp:
# record loss weight
if batch_idx == 0:
loss_weights_info = ''
for k in self.opt['train']['loss_weight'].keys():
loss_weights_info += '%s: %f, ' % (k, self.opt['train']['loss_weight'][k])
fp.write('# Loss weights: \n' + loss_weights_info + '\n')
fp.write(log_info + '\n')
if iter_idx % self.opt['train']['ckpt_interval']['batch'] == 0 and iter_idx != 0:
for folder in glob.glob(self.opt['train']['net_ckpt_dir'] + '/batch_*'):
shutil.rmtree(folder)
model_folder = self.opt['train']['net_ckpt_dir'] + '/batch_%d' % iter_idx
os.makedirs(model_folder, exist_ok = True)
self.save_ckpt(model_folder, save_optm = False)
if iter_idx % self.opt['train']['eval_interval'] == 0 and iter_idx != 0:
# if True:
self.mini_test()
self.set_train()
time1 = time.time()
print('One iteration costs %f secs' % (time1 - time0))
time0 = time1
if iter_idx == self.iter_num:
return
""" EPOCH """
# record epoch loss
for key in epoch_losses.keys():
epoch_losses[key] /= self.batch_num
writer.add_scalar('%s/Epoch' % key, epoch_losses[key], epoch_idx)
if epoch_idx % self.opt['train']['ckpt_interval']['epoch'] == 0:
model_folder = self.opt['train']['net_ckpt_dir'] + '/epoch_%d' % epoch_idx
os.makedirs(model_folder, exist_ok = True)
self.save_ckpt(model_folder)
if self.batch_num > 50:
latest_folder = self.opt['train']['net_ckpt_dir'] + '/epoch_latest'
os.makedirs(latest_folder, exist_ok = True)
self.save_ckpt(latest_folder)
writer.close()
@torch.no_grad()
def mini_test(self):
""" Test during training """
pass
def forward_one_pass(self, items):
raise NotImplementedError('"forward_one_pass" method is not implemented!')
def update_config_before_epoch(self, epoch_idx):
pass