Spaces:
Running
Running
import torch | |
import numpy as np | |
from AnimatableGaussians.utils.sh_utils import RGB2SH, SH2RGB | |
from AnimatableGaussians.utils.general_utils import inverse_sigmoid | |
from plyfile import PlyData, PlyElement | |
import os | |
def construct_list_of_attributes(_features_dc, _features_rest, _scaling, _rotation): | |
l = ['x', 'y', 'z', 'nx', 'ny', 'nz'] | |
# All channels except the 3 DC | |
for i in range(_features_dc.shape[1] * _features_dc.shape[2]): | |
l.append('f_dc_{}'.format(i)) | |
for i in range(_features_rest.shape[1] * _features_rest.shape[2]): | |
l.append('f_rest_{}'.format(i)) | |
l.append('opacity') | |
for i in range(_scaling.shape[1]): | |
l.append('scale_{}'.format(i)) | |
for i in range(_rotation.shape[1]): | |
l.append('rot_{}'.format(i)) | |
return l | |
def save_gaussians_as_ply(path, gaussian_vals: dict): | |
os.makedirs(os.path.dirname(path), exist_ok = True) | |
xyz = gaussian_vals['positions'].detach().cpu().numpy() | |
normals = np.zeros_like(xyz) | |
fused_color = RGB2SH(gaussian_vals['colors'].detach()[:, [2, 1, 0]]) | |
features = torch.zeros((fused_color.shape[0], 3, (3 + 1) ** 2)) | |
features[:, :3, 0] = fused_color | |
features_dc = features[:, :, 0:1].transpose(1, 2) | |
features_rest = features[:, :, 1:].transpose(1, 2) | |
f_dc = features_dc.transpose(1, 2).flatten(start_dim = 1).contiguous().cpu().numpy() | |
f_rest = features_rest.transpose(1, 2).flatten(start_dim = 1).contiguous().cpu().numpy() | |
opacities = inverse_sigmoid(gaussian_vals['opacity'].detach()).cpu().numpy() | |
scale = torch.log(gaussian_vals['scales'].detach()).cpu().numpy() | |
rotation = gaussian_vals['rotations'].detach().cpu().numpy() | |
dtype_full = [(attribute, 'f4') for attribute in construct_list_of_attributes(features_dc, features_rest, scale, rotation)] | |
elements = np.empty(xyz.shape[0], dtype = dtype_full) | |
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis = 1) | |
elements[:] = list(map(tuple, attributes)) | |
el = PlyElement.describe(elements, 'vertex') | |
PlyData([el]).write(path) | |
def load_gaussians_from_ply(path): | |
plydata = PlyData.read(path) | |
xyz = np.stack((np.asarray(plydata.elements[0]["x"]), | |
np.asarray(plydata.elements[0]["y"]), | |
np.asarray(plydata.elements[0]["z"])), axis = 1) | |
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] | |
features_dc = np.zeros((xyz.shape[0], 3, 1)) | |
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) | |
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"]) | |
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"]) | |
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")] | |
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1])) | |
# assert len(extra_f_names) == 3 * (self.max_sh_degree + 1) ** 2 - 3 | |
features_extra = np.zeros((xyz.shape[0], len(extra_f_names))) | |
for idx, attr_name in enumerate(extra_f_names): | |
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC) | |
features_extra = features_extra.reshape((features_extra.shape[0], 3, (3 + 1) ** 2 - 1)) | |
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] | |
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1])) | |
scales = np.zeros((xyz.shape[0], len(scale_names))) | |
for idx, attr_name in enumerate(scale_names): | |
scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")] | |
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1])) | |
rots = np.zeros((xyz.shape[0], len(rot_names))) | |
for idx, attr_name in enumerate(rot_names): | |
rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
# self._xyz = nn.Parameter(torch.tensor(xyz, dtype = torch.float, device = "cuda").requires_grad_(True)) | |
# self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype = torch.float, device = "cuda").transpose(1, 2).contiguous().requires_grad_(True)) | |
# self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype = torch.float, device = "cuda").transpose(1, 2).contiguous().requires_grad_(True)) | |
# self._opacity = nn.Parameter(torch.tensor(opacities, dtype = torch.float, device = "cuda").requires_grad_(True)) | |
# self._scaling = nn.Parameter(torch.tensor(scales, dtype = torch.float, device = "cuda").requires_grad_(True)) | |
# self._rotation = nn.Parameter(torch.tensor(rots, dtype = torch.float, device = "cuda").requires_grad_(True)) | |
# | |
# self.active_sh_degree = self.max_sh_degree | |
return { | |
'positions': torch.tensor(xyz, dtype = torch.float, device = "cuda"), | |
'colors': torch.tensor(SH2RGB(features_dc)[:, [2, 1, 0]], dtype = torch.float, device = "cuda").squeeze(-1), | |
'opacity': torch.sigmoid(torch.tensor(opacities, dtype = torch.float, device = "cuda")), | |
'scales': torch.exp(torch.tensor(scales, dtype = torch.float, device = "cuda")), | |
'rotations': torch.nn.functional.normalize(torch.tensor(rots, dtype = torch.float, device = "cuda")), | |
'features_extr': torch.tensor(features_extra, dtype = torch.float, device = "cuda") | |
} | |