pengc02's picture
all
ec9a6bc
raw
history blame
13.3 kB
import numpy as np
import numpy.linalg as npla
import cv2
landmarks_2D_new = np.array([
[ 0.000213256, 0.106454 ], #17
[ 0.0752622, 0.038915 ], #18
[ 0.18113, 0.0187482 ], #19
[ 0.29077, 0.0344891 ], #20
[ 0.393397, 0.0773906 ], #21
[ 0.586856, 0.0773906 ], #22
[ 0.689483, 0.0344891 ], #23
[ 0.799124, 0.0187482 ], #24
[ 0.904991, 0.038915 ], #25
[ 0.98004, 0.106454 ], #26
[ 0.490127, 0.203352 ], #27
[ 0.490127, 0.307009 ], #28
[ 0.490127, 0.409805 ], #29
[ 0.490127, 0.515625 ], #30
[ 0.36688, 0.587326 ], #31
[ 0.426036, 0.609345 ], #32
[ 0.490127, 0.628106 ], #33
[ 0.554217, 0.609345 ], #34
[ 0.613373, 0.587326 ], #35
[ 0.121737, 0.216423 ], #36
[ 0.187122, 0.178758 ], #37
[ 0.265825, 0.179852 ], #38
[ 0.334606, 0.231733 ], #39
[ 0.260918, 0.245099 ], #40
[ 0.182743, 0.244077 ], #41
[ 0.645647, 0.231733 ], #42
[ 0.714428, 0.179852 ], #43
[ 0.793132, 0.178758 ], #44
[ 0.858516, 0.216423 ], #45
[ 0.79751, 0.244077 ], #46
[ 0.719335, 0.245099 ], #47
[ 0.254149, 0.780233 ], #48
[ 0.726104, 0.780233 ], #54
], dtype=np.float32
)
landmarks_2D_new = (landmarks_2D_new - 0.5) * 0.8 + 0.5
def get_transform_mat(landmarks, output_size=128):
if not isinstance(landmarks, np.ndarray):
landmarks = np.array(landmarks)
# estimate landmarks transform from global space to local aligned space with bounds [0..1]
mat = umeyama(np.concatenate([landmarks[17:49] , landmarks[54:55] ]), landmarks_2D_new, True)[0:2]
# get corner points in global space
g_p = transform_points(np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5) ]), mat, True)
g_c = g_p[4]
# calc diagonal vectors between corners in global space
tb_diag_vec = (g_p[2]-g_p[0]).astype(np.float32)
tb_diag_vec /= npla.norm(tb_diag_vec)
bt_diag_vec = (g_p[1]-g_p[3]).astype(np.float32)
bt_diag_vec /= npla.norm(bt_diag_vec)
# calc modifier of diagonal vectors for scale and padding value
mod = npla.norm(g_p[0]-g_p[2])*(0.4*np.sqrt(2.0) + 0.5)
# adjust vertical offset for WHOLE_FACE, 20% below in order to cover more forehead
vec = (g_p[0]-g_p[3]).astype(np.float32)
vec_len = npla.norm(vec)
vec /= vec_len
g_c += vec*vec_len*0.2
# calc 3 points in global space to estimate 2d affine transform
l_t = np.array( [ g_c - tb_diag_vec*mod,
g_c + bt_diag_vec*mod,
g_c + tb_diag_vec*mod ] )
# calc affine transform from 3 global space points to 3 local space points size of 'output_size'
pts2 = np.float32(( (0,0),(output_size,0),(output_size,output_size) ))
mat = cv2.getAffineTransform(l_t,pts2)
return mat
def transform_points(points, mat, invert=False):
if invert:
mat = cv2.invertAffineTransform (mat)
points = np.expand_dims(points, axis=1)
points = cv2.transform(points, mat, points.shape)
points = np.squeeze(points)
return points
def get_image_hull_mask(image_shape, landmarks):
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
lmrks = expand_eyebrows(landmarks, 1.0)
r_jaw = (lmrks[0:9], lmrks[17:18])
l_jaw = (lmrks[8:17], lmrks[26:27])
r_cheek = (lmrks[17:20], lmrks[8:9])
l_cheek = (lmrks[24:27], lmrks[8:9])
nose_ridge = (lmrks[19:25], lmrks[8:9],)
r_eye = (lmrks[17:22], lmrks[27:28], lmrks[31:36], lmrks[8:9])
l_eye = (lmrks[22:27], lmrks[27:28], lmrks[31:36], lmrks[8:9])
nose = (lmrks[27:31], lmrks[31:36])
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
for item in parts:
merged = np.concatenate(item)
cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), (1,) )
return hull_mask
def expand_eyebrows(lmrks, eyebrows_expand_mod=1.0):
lmrks = np.array( lmrks.copy(), dtype=np.int )
# #nose
ml_pnt = (lmrks[36] + lmrks[0]) // 2
mr_pnt = (lmrks[16] + lmrks[45]) // 2
# mid points between the mid points and eye
ql_pnt = (lmrks[36] + ml_pnt) // 2
qr_pnt = (lmrks[45] + mr_pnt) // 2
# Top of the eye arrays
bot_l = np.array((ql_pnt, lmrks[36], lmrks[37], lmrks[38], lmrks[39]))
bot_r = np.array((lmrks[42], lmrks[43], lmrks[44], lmrks[45], qr_pnt))
# Eyebrow arrays
top_l = lmrks[17:22]
top_r = lmrks[22:27]
# Adjust eyebrow arrays
lmrks[17:22] = top_l + eyebrows_expand_mod * 0.5 * (top_l - bot_l)
lmrks[22:27] = top_r + eyebrows_expand_mod * 0.5 * (top_r - bot_r)
return lmrks
def process_face_det_results(face_det_results):
"""Process det results, and return a list of bboxes.
:param face_det_results: (top, right, bottom and left)
:return: a list of detected bounding boxes (x,y,x,y)-format
"""
person_results = []
for bbox in face_det_results:
bbox = bbox[0]
person = {}
# left, top, right, bottom
person['bbox'] = [bbox[3], bbox[0], bbox[1], bbox[2]]
person_results.append(person)
return person_results
def area_of(left_top, right_bottom):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
def iou_of(boxes0, boxes1, eps=1e-5):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
# _, indexes = scores.sort(descending=True)
indexes = np.argsort(scores)
# indexes = indexes[:candidate_size]
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
# current = indexes[0]
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
# indexes = indexes[1:]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(current_box, axis=0),
)
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def predict_box(width, height, confidences, boxes, prob_threshold, iou_threshold=0.3, top_k=-1):
boxes = boxes[0]
confidences = confidences[0]
picked_box_probs = []
picked_labels = []
for class_index in range(1, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > prob_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = boxes[mask, :]
box_probs = np.concatenate([subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = hard_nms(box_probs, iou_threshold=iou_threshold, top_k=top_k)
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if not picked_box_probs:
return np.array([]), np.array([]), np.array([])
picked_box_probs = np.concatenate(picked_box_probs)
picked_box_probs[:, 0] *= width
picked_box_probs[:, 1] *= height
picked_box_probs[:, 2] *= width
picked_box_probs[:, 3] *= height
return picked_box_probs[:, :4].astype(np.int32), np.array(picked_labels), picked_box_probs[:, 4]
class BBox(object):
# bbox is a list of [left, right, top, bottom]
def __init__(self, bbox):
self.left = bbox[0]
self.right = bbox[1]
self.top = bbox[2]
self.bottom = bbox[3]
self.x = bbox[0]
self.y = bbox[2]
self.w = bbox[1] - bbox[0]
self.h = bbox[3] - bbox[2]
# scale to [0,1]
def projectLandmark(self, landmark):
landmark_= np.asarray(np.zeros(landmark.shape))
for i, point in enumerate(landmark):
landmark_[i] = ((point[0]-self.x)/self.w, (point[1]-self.y)/self.h)
return landmark_
# landmark of (5L, 2L) from [0,1] to real range
def reprojectLandmark(self, landmark):
landmark_= np.asarray(np.zeros(landmark.shape))
for i, point in enumerate(landmark):
x = point[0] * self.w + self.x
y = point[1] * self.h + self.y
landmark_[i] = (x, y)
return landmark_
def umeyama(src, dst, estimate_scale):
"""Estimate N-D similarity transformation with or without scaling.
Parameters
----------
src : (M, N) array
Source coordinates.
dst : (M, N) array
Destination coordinates.
estimate_scale : bool
Whether to estimate scaling factor.
Returns
-------
T : (N + 1, N + 1)
The homogeneous similarity transformation matrix. The matrix contains
NaN values only if the problem is not well-conditioned.
References
----------
.. [1] "Least-squares estimation of transformation parameters between two
point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
"""
num = src.shape[0]
dim = src.shape[1]
# Compute mean of src and dst.
src_mean = src.mean(axis=0)
dst_mean = dst.mean(axis=0)
# Subtract mean from src and dst.
src_demean = src - src_mean
dst_demean = dst - dst_mean
# Eq. (38).
A = np.dot(dst_demean.T, src_demean) / num
# Eq. (39).
d = np.ones((dim,), dtype=np.double)
if np.linalg.det(A) < 0:
d[dim - 1] = -1
T = np.eye(dim + 1, dtype=np.double)
U, S, V = np.linalg.svd(A)
# Eq. (40) and (43).
rank = np.linalg.matrix_rank(A)
if rank == 0:
return np.nan * T
elif rank == dim - 1:
if np.linalg.det(U) * np.linalg.det(V) > 0:
T[:dim, :dim] = np.dot(U, V)
else:
s = d[dim - 1]
d[dim - 1] = -1
T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V))
d[dim - 1] = s
else:
T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V))
if estimate_scale:
# Eq. (41) and (42).
scale = 1.0 / src_demean.var(axis=0).sum() * np.dot(S, d)
else:
scale = 1.0
T[:dim, dim] = dst_mean - scale * np.dot(T[:dim, :dim], src_mean.T)
T[:dim, :dim] *= scale
return T
def xyxy2xywh(bbox_xyxy):
"""Transform the bbox format from x1y1x2y2 to xywh.
Args:
bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
Returns:
np.ndarray: Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
"""
bbox_xywh = bbox_xyxy.copy()
bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0] + 1
bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1] + 1
return bbox_xywh
def xywh2xyxy(bbox_xywh):
"""Transform the bbox format from xywh to x1y1x2y2.
Args:
bbox_xywh (ndarray): Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
Returns:
np.ndarray: Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
"""
bbox_xyxy = bbox_xywh.copy()
bbox_xyxy[:, 2] = bbox_xyxy[:, 2] + bbox_xyxy[:, 0] - 1
bbox_xyxy[:, 3] = bbox_xyxy[:, 3] + bbox_xyxy[:, 1] - 1
return bbox_xyxy
def box2cs(cfg, box):
"""This encodes bbox(x,y,w,h) into (center, scale)
Args:
x, y, w, h
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32](2,): Center of the bbox (x, y).
- np.ndarray[float32](2,): Scale of the bbox w & h.
"""
x, y, w, h = box[:4]
input_size = cfg.data_cfg['image_size']
aspect_ratio = input_size[0] / input_size[1]
center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32)
if w > aspect_ratio * h:
h = w * 1.0 / aspect_ratio
elif w < aspect_ratio * h:
w = h * aspect_ratio
# pixel std is 200.0
scale = np.array([w / 200.0, h / 200.0], dtype=np.float32)
scale = scale * 1.25
return center, scale