Spaces:
Runtime error
Runtime error
import streamlit as st | |
import streamlit.components.v1 as com | |
#import libraries | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig | |
import numpy as np | |
#convert logits to probabilities | |
from scipy.special import softmax | |
from transformers import pipeline | |
#Set the page configs | |
st.set_page_config(page_title='Sentiments Analysis',page_icon='π',layout='wide') | |
#welcome Animation | |
com.iframe("https://embed.lottiefiles.com/animation/149093") | |
st.markdown("<h1 style='text-align: center'> Covid Vaccine Tweet Sentiments </h1>",unsafe_allow_html=True) | |
st.write("<h2 style='font-size: 24px;'> These models were trained to detect how a user feels about the covid vaccines based on their tweets(text) </h2>",unsafe_allow_html=True) | |
#Create a form to take user inputs | |
with st.form(key='tweet',clear_on_submit=True): | |
#input text | |
text=st.text_area('Copy and paste a tweet or type one',placeholder='I find it quite amusing how people ignore the effects of not taking the vaccine') | |
#Set examples | |
alt_text=st.selectbox("Can't Type? Select an Example below",('I hate the vaccines','Vaccines made from dead human tissues','Take the vaccines or regret the consequences','Covid is a Hoax','Making the vaccines is a huge step forward for humanity. Just take them')) | |
#Select a model | |
models={'Bert':'penscola/tweet_sentiments_analysis_roberta', | |
'Distilbert':'penscola/tweet_sentiments_analysis_distilbert', | |
'Roberta':'penscola/tweet_sentiments_analysis_roberta'} | |
model=st.selectbox('Which model would you want to Use?',('Bert','Distilbert','Roberta')) | |
#Submit | |
submit=st.form_submit_button('Predict','Continue processing input') | |
selected_model=models[model] | |
#create columns to show outputs | |
col1,col2,col3=st.columns(3) | |
col1.write('<h2 style="font-size: 24px;"> Sentiment Emoji </h2>',unsafe_allow_html=True) | |
col2.write('<h2 style="font-size: 24px;"> How this user feels about the vaccine </h2>',unsafe_allow_html=True) | |
col3.write('<h2 style="font-size: 24px;"> Confidence of this prediction </h2>',unsafe_allow_html=True) | |
if submit: | |
#Check text | |
if text=="": | |
text=alt_text | |
st.success(f"input text is set to '{text}'") | |
else: | |
st.success('Text received',icon='β ') | |
#import the model | |
pipe=pipeline(model=selected_model) | |
#pass text to model | |
output=pipe(text) | |
output_dict=output[0] | |
lable=output_dict['label'] | |
score=output_dict['score'] | |
#output | |
if lable=='NEGATIVE' or lable=='LABEL_0': | |
with col1: | |
com.iframe("https://embed.lottiefiles.com/animation/125694") | |
col2.write('NEGATIVE') | |
col3.write(f'{score:.2%}') | |
elif lable=='POSITIVE'or lable=='LABEL_2': | |
with col1: | |
com.iframe("https://embed.lottiefiles.com/animation/148485") | |
col2.write('POSITIVE') | |
col3.write(f'{score:.2%}') | |
else: | |
with col1: | |
com.iframe("https://embed.lottiefiles.com/animation/136052") | |
col2.write('NEUTRAL') | |
col3.write(f'{score:.2%}') |