TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
import io
import numpy as np
import torch
import torch.nn.functional as F
from .. import FairseqDataset
from ..data_utils import compute_mask_indices, get_buckets, get_bucketed_sizes
from fairseq.data.audio.audio_utils import (
parse_path,
read_from_stored_zip,
is_sf_audio_data,
)
from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel
logger = logging.getLogger(__name__)
class RawAudioDataset(FairseqDataset):
def __init__(
self,
sample_rate,
max_sample_size=None,
min_sample_size=0,
shuffle=True,
pad=False,
normalize=False,
compute_mask_indices=False,
**mask_compute_kwargs,
):
super().__init__()
self.sample_rate = sample_rate
self.sizes = []
self.max_sample_size = (
max_sample_size if max_sample_size is not None else sys.maxsize
)
self.min_sample_size = min_sample_size
self.pad = pad
self.shuffle = shuffle
self.normalize = normalize
self.compute_mask_indices = compute_mask_indices
if self.compute_mask_indices:
self.mask_compute_kwargs = mask_compute_kwargs
self._features_size_map = {}
self._C = mask_compute_kwargs["encoder_embed_dim"]
self._conv_feature_layers = eval(mask_compute_kwargs["conv_feature_layers"])
def __getitem__(self, index):
raise NotImplementedError()
def __len__(self):
return len(self.sizes)
def postprocess(self, feats, curr_sample_rate):
if feats.dim() == 2:
feats = feats.mean(-1)
if curr_sample_rate != self.sample_rate:
raise Exception(f"sample rate: {curr_sample_rate}, need {self.sample_rate}")
assert feats.dim() == 1, feats.dim()
if self.normalize:
with torch.no_grad():
feats = F.layer_norm(feats, feats.shape)
return feats
def crop_to_max_size(self, wav, target_size):
size = len(wav)
diff = size - target_size
if diff <= 0:
return wav
start = np.random.randint(0, diff + 1)
end = size - diff + start
return wav[start:end]
def _compute_mask_indices(self, dims, padding_mask):
B, T, C = dims
mask_indices, mask_channel_indices = None, None
if self.mask_compute_kwargs["mask_prob"] > 0:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_compute_kwargs["mask_prob"],
self.mask_compute_kwargs["mask_length"],
self.mask_compute_kwargs["mask_selection"],
self.mask_compute_kwargs["mask_other"],
min_masks=2,
no_overlap=self.mask_compute_kwargs["no_mask_overlap"],
min_space=self.mask_compute_kwargs["mask_min_space"],
)
mask_indices = torch.from_numpy(mask_indices)
if self.mask_compute_kwargs["mask_channel_prob"] > 0:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_compute_kwargs["mask_channel_prob"],
self.mask_compute_kwargs["mask_channel_length"],
self.mask_compute_kwargs["mask_channel_selection"],
self.mask_compute_kwargs["mask_channel_other"],
no_overlap=self.mask_compute_kwargs["no_mask_channel_overlap"],
min_space=self.mask_compute_kwargs["mask_channel_min_space"],
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices).unsqueeze(1).expand(-1, T, -1)
)
return mask_indices, mask_channel_indices
@staticmethod
def _bucket_tensor(tensor, num_pad, value):
return F.pad(tensor, (0, num_pad), value=value)
def collater(self, samples):
samples = [s for s in samples if s["source"] is not None]
if len(samples) == 0:
return {}
sources = [s["source"] for s in samples]
sizes = [len(s) for s in sources]
if self.pad:
target_size = min(max(sizes), self.max_sample_size)
else:
target_size = min(min(sizes), self.max_sample_size)
collated_sources = sources[0].new_zeros(len(sources), target_size)
padding_mask = (
torch.BoolTensor(collated_sources.shape).fill_(False) if self.pad else None
)
for i, (source, size) in enumerate(zip(sources, sizes)):
diff = size - target_size
if diff == 0:
collated_sources[i] = source
elif diff < 0:
assert self.pad
collated_sources[i] = torch.cat(
[source, source.new_full((-diff,), 0.0)]
)
padding_mask[i, diff:] = True
else:
collated_sources[i] = self.crop_to_max_size(source, target_size)
input = {"source": collated_sources}
out = {"id": torch.LongTensor([s["id"] for s in samples])}
if self.pad:
input["padding_mask"] = padding_mask
if hasattr(self, "num_buckets") and self.num_buckets > 0:
assert self.pad, "Cannot bucket without padding first."
bucket = max(self._bucketed_sizes[s["id"]] for s in samples)
num_pad = bucket - collated_sources.size(-1)
if num_pad:
input["source"] = self._bucket_tensor(collated_sources, num_pad, 0)
input["padding_mask"] = self._bucket_tensor(padding_mask, num_pad, True)
if self.compute_mask_indices:
B = input["source"].size(0)
T = self._get_mask_indices_dims(input["source"].size(-1))
padding_mask_reshaped = input["padding_mask"].clone()
extra = padding_mask_reshaped.size(1) % T
if extra > 0:
padding_mask_reshaped = padding_mask_reshaped[:, :-extra]
padding_mask_reshaped = padding_mask_reshaped.view(
padding_mask_reshaped.size(0), T, -1
)
padding_mask_reshaped = padding_mask_reshaped.all(-1)
input["padding_count"] = padding_mask_reshaped.sum(-1).max().item()
mask_indices, mask_channel_indices = self._compute_mask_indices(
(B, T, self._C),
padding_mask_reshaped,
)
input["mask_indices"] = mask_indices
input["mask_channel_indices"] = mask_channel_indices
out["sample_size"] = mask_indices.sum().item()
out["net_input"] = input
return out
def _get_mask_indices_dims(self, size, padding=0, dilation=1):
if size not in self._features_size_map:
L_in = size
for (_, kernel_size, stride) in self._conv_feature_layers:
L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
L_out = 1 + L_out // stride
L_in = L_out
self._features_size_map[size] = L_out
return self._features_size_map[size]
def num_tokens(self, index):
return self.size(index)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
if self.pad:
return self.sizes[index]
return min(self.sizes[index], self.max_sample_size)
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
order = [np.random.permutation(len(self))]
order.append(
np.minimum(
np.array(self.sizes),
self.max_sample_size,
)
)
return np.lexsort(order)[::-1]
else:
return np.arange(len(self))
def set_bucket_info(self, num_buckets):
self.num_buckets = num_buckets
if self.num_buckets > 0:
self._collated_sizes = np.minimum(
np.array(self.sizes),
self.max_sample_size,
)
self.buckets = get_buckets(
self._collated_sizes,
self.num_buckets,
)
self._bucketed_sizes = get_bucketed_sizes(
self._collated_sizes, self.buckets
)
logger.info(
f"{len(self.buckets)} bucket(s) for the audio dataset: "
f"{self.buckets}"
)
class FileAudioDataset(RawAudioDataset):
def __init__(
self,
manifest_path,
sample_rate,
max_sample_size=None,
min_sample_size=0,
shuffle=True,
pad=False,
normalize=False,
num_buckets=0,
compute_mask_indices=False,
text_compression_level=TextCompressionLevel.none,
**mask_compute_kwargs,
):
super().__init__(
sample_rate=sample_rate,
max_sample_size=max_sample_size,
min_sample_size=min_sample_size,
shuffle=shuffle,
pad=pad,
normalize=normalize,
compute_mask_indices=compute_mask_indices,
**mask_compute_kwargs,
)
self.text_compressor = TextCompressor(level=text_compression_level)
skipped = 0
self.fnames = []
sizes = []
self.skipped_indices = set()
with open(manifest_path, "r") as f:
self.root_dir = f.readline().strip()
for i, line in enumerate(f):
items = line.strip().split("\t")
assert len(items) == 2, line
sz = int(items[1])
if min_sample_size is not None and sz < min_sample_size:
skipped += 1
self.skipped_indices.add(i)
continue
self.fnames.append(self.text_compressor.compress(items[0]))
sizes.append(sz)
logger.info(f"loaded {len(self.fnames)}, skipped {skipped} samples")
self.sizes = np.array(sizes, dtype=np.int64)
try:
import pyarrow
self.fnames = pyarrow.array(self.fnames)
except:
logger.debug(
"Could not create a pyarrow array. Please install pyarrow for better performance"
)
pass
self.set_bucket_info(num_buckets)
def __getitem__(self, index):
import soundfile as sf
fn = self.fnames[index]
fn = fn if isinstance(self.fnames, list) else fn.as_py()
fn = self.text_compressor.decompress(fn)
path_or_fp = os.path.join(self.root_dir, fn)
_path, slice_ptr = parse_path(path_or_fp)
if len(slice_ptr) == 2:
byte_data = read_from_stored_zip(_path, slice_ptr[0], slice_ptr[1])
assert is_sf_audio_data(byte_data)
path_or_fp = io.BytesIO(byte_data)
wav, curr_sample_rate = sf.read(path_or_fp, dtype="float32")
feats = torch.from_numpy(wav).float()
feats = self.postprocess(feats, curr_sample_rate)
return {"id": index, "source": feats}
class BinarizedAudioDataset(RawAudioDataset):
def __init__(
self,
data_dir,
split,
sample_rate,
max_sample_size=None,
min_sample_size=0,
shuffle=True,
pad=False,
normalize=False,
num_buckets=0,
compute_mask_indices=False,
**mask_compute_kwargs,
):
super().__init__(
sample_rate=sample_rate,
max_sample_size=max_sample_size,
min_sample_size=min_sample_size,
shuffle=shuffle,
pad=pad,
normalize=normalize,
compute_mask_indices=compute_mask_indices,
**mask_compute_kwargs,
)
from fairseq.data import data_utils, Dictionary
self.fnames_dict = Dictionary.load(os.path.join(data_dir, "dict.txt"))
root_path = os.path.join(data_dir, f"{split}.root")
if os.path.exists(root_path):
with open(root_path, "r") as f:
self.root_dir = next(f).strip()
else:
self.root_dir = None
fnames_path = os.path.join(data_dir, split)
self.fnames = data_utils.load_indexed_dataset(fnames_path, self.fnames_dict)
lengths_path = os.path.join(data_dir, f"{split}.lengths")
with open(lengths_path, "r") as f:
for line in f:
sz = int(line.rstrip())
assert (
sz >= min_sample_size
), f"Min sample size is not supported for binarized dataset, but found a sample with size {sz}"
self.sizes.append(sz)
self.sizes = np.array(self.sizes, dtype=np.int64)
self.set_bucket_info(num_buckets)
logger.info(f"loaded {len(self.fnames)} samples")
def __getitem__(self, index):
import soundfile as sf
fname = self.fnames_dict.string(self.fnames[index], separator="")
if self.root_dir:
fname = os.path.join(self.root_dir, fname)
wav, curr_sample_rate = sf.read(fname)
feats = torch.from_numpy(wav).float()
feats = self.postprocess(feats, curr_sample_rate)
return {"id": index, "source": feats}