|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import logging |
|
from typing import Dict, List |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from fairseq import utils |
|
from fairseq.data import encoders |
|
from fairseq.hub_utils import GeneratorHubInterface |
|
from omegaconf import open_dict |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class BARTHubInterface(GeneratorHubInterface): |
|
"""A simple PyTorch Hub interface to BART. |
|
|
|
Usage: https://github.com/pytorch/fairseq/tree/main/examples/bart |
|
""" |
|
|
|
def __init__(self, cfg, task, model): |
|
super().__init__(cfg, task, [model]) |
|
self.model = self.models[0] |
|
|
|
def encode( |
|
self, sentence: str, *addl_sentences, no_separator=True |
|
) -> torch.LongTensor: |
|
""" |
|
BPE-encode a sentence (or multiple sentences). |
|
|
|
Every sequence begins with a beginning-of-sentence (`<s>`) symbol. |
|
Every sentence ends with an end-of-sentence (`</s>`). |
|
|
|
Example (single sentence): `<s> a b c </s>` |
|
Example (sentence pair): `<s> d e f </s> 1 2 3 </s>` |
|
|
|
The BPE encoding follows GPT-2. One subtle detail is that the GPT-2 BPE |
|
requires leading spaces. For example:: |
|
|
|
>>> bart.encode('Hello world').tolist() |
|
[0, 31414, 232, 2] |
|
>>> bart.encode(' world').tolist() |
|
[0, 232, 2] |
|
>>> bart.encode('world').tolist() |
|
[0, 8331, 2] |
|
""" |
|
tokens = self.bpe.encode(sentence) |
|
if len(tokens.split(" ")) > min(self.max_positions) - 2: |
|
tokens = " ".join(tokens.split(" ")[: min(self.max_positions) - 2]) |
|
bpe_sentence = "<s> " + tokens + " </s>" |
|
for s in addl_sentences: |
|
bpe_sentence += " </s>" if not no_separator else "" |
|
bpe_sentence += " " + self.bpe.encode(s) + " </s>" |
|
tokens = self.task.source_dictionary.encode_line(bpe_sentence, append_eos=False) |
|
return tokens.long() |
|
|
|
def decode(self, tokens: torch.LongTensor): |
|
assert tokens.dim() == 1 |
|
tokens = tokens.cpu().numpy() |
|
if tokens[0] == self.task.source_dictionary.bos(): |
|
tokens = tokens[1:] |
|
eos_mask = tokens == self.task.source_dictionary.eos() |
|
doc_mask = eos_mask[1:] & eos_mask[:-1] |
|
sentences = np.split(tokens, doc_mask.nonzero()[0] + 1) |
|
sentences = [ |
|
self.bpe.decode(self.task.source_dictionary.string(s)) for s in sentences |
|
] |
|
if len(sentences) == 1: |
|
return sentences[0] |
|
return sentences |
|
|
|
def _build_sample(self, src_tokens: List[torch.LongTensor]): |
|
|
|
dataset = self.task.build_dataset_for_inference( |
|
src_tokens, |
|
[x.numel() for x in src_tokens], |
|
) |
|
sample = dataset.collater(dataset) |
|
sample = utils.apply_to_sample(lambda tensor: tensor.to(self.device), sample) |
|
return sample |
|
|
|
def generate( |
|
self, |
|
tokenized_sentences: List[torch.LongTensor], |
|
*args, |
|
inference_step_args=None, |
|
skip_invalid_size_inputs=False, |
|
**kwargs |
|
) -> List[List[Dict[str, torch.Tensor]]]: |
|
inference_step_args = inference_step_args or {} |
|
if "prefix_tokens" in inference_step_args: |
|
raise NotImplementedError("prefix generation not implemented for BART") |
|
res = [] |
|
for batch in self._build_batches(tokenized_sentences, skip_invalid_size_inputs): |
|
src_tokens = batch["net_input"]["src_tokens"] |
|
inference_step_args["prefix_tokens"] = src_tokens.new_full( |
|
(src_tokens.size(0), 1), fill_value=self.task.source_dictionary.bos() |
|
).to(device=self.device) |
|
results = super().generate( |
|
src_tokens, |
|
*args, |
|
inference_step_args=inference_step_args, |
|
skip_invalid_size_inputs=skip_invalid_size_inputs, |
|
**kwargs |
|
) |
|
for id, hypos in zip(batch["id"].tolist(), results): |
|
res.append((id, hypos)) |
|
res = [hypos for _, hypos in sorted(res, key=lambda x: x[0])] |
|
return res |
|
|
|
def extract_features( |
|
self, tokens: torch.LongTensor, return_all_hiddens: bool = False |
|
) -> torch.Tensor: |
|
if tokens.dim() == 1: |
|
tokens = tokens.unsqueeze(0) |
|
if tokens.size(-1) > min(self.model.max_positions()): |
|
raise ValueError( |
|
"tokens exceeds maximum length: {} > {}".format( |
|
tokens.size(-1), self.model.max_positions() |
|
) |
|
) |
|
tokens.to(device=self.device), |
|
prev_output_tokens = tokens.clone() |
|
|
|
prev_output_tokens[:, 0] = tokens.gather( |
|
1, |
|
(tokens.ne(self.task.source_dictionary.pad()).sum(dim=1) - 1).unsqueeze(-1), |
|
).squeeze() |
|
|
|
prev_output_tokens[:, 1:] = tokens[:, :-1] |
|
features, extra = self.model( |
|
src_tokens=tokens, |
|
src_lengths=None, |
|
prev_output_tokens=prev_output_tokens, |
|
features_only=True, |
|
return_all_hiddens=return_all_hiddens, |
|
) |
|
if return_all_hiddens: |
|
|
|
inner_states = extra["inner_states"] |
|
return [inner_state.transpose(0, 1) for inner_state in inner_states] |
|
else: |
|
return features |
|
|
|
def register_classification_head( |
|
self, name: str, num_classes: int = None, embedding_size: int = None, **kwargs |
|
): |
|
self.model.register_classification_head( |
|
name, num_classes=num_classes, embedding_size=embedding_size, **kwargs |
|
) |
|
|
|
def predict(self, head: str, tokens: torch.LongTensor, return_logits: bool = False): |
|
if tokens.dim() == 1: |
|
tokens = tokens.unsqueeze(0) |
|
features = self.extract_features(tokens.to(device=self.device)) |
|
sentence_representation = features[ |
|
tokens.eq(self.task.source_dictionary.eos()), : |
|
].view(features.size(0), -1, features.size(-1))[:, -1, :] |
|
|
|
logits = self.model.classification_heads[head](sentence_representation) |
|
if return_logits: |
|
return logits |
|
return F.log_softmax(logits, dim=-1) |
|
|
|
def fill_mask( |
|
self, |
|
masked_inputs: List[str], |
|
topk: int = 5, |
|
match_source_len: bool = True, |
|
**generate_kwargs |
|
): |
|
masked_token = "<mask>" |
|
batch_tokens = [] |
|
for masked_input in masked_inputs: |
|
assert ( |
|
masked_token in masked_input |
|
), "please add one {} token for the input".format(masked_token) |
|
|
|
text_spans = masked_input.split(masked_token) |
|
text_spans_bpe = ( |
|
(" {0} ".format(masked_token)) |
|
.join([self.bpe.encode(text_span.rstrip()) for text_span in text_spans]) |
|
.strip() |
|
) |
|
tokens = self.task.source_dictionary.encode_line( |
|
"<s> " + text_spans_bpe + " </s>", |
|
append_eos=False, |
|
add_if_not_exist=False, |
|
).long() |
|
batch_tokens.append(tokens) |
|
|
|
|
|
generate_kwargs["beam"] = max( |
|
topk, |
|
generate_kwargs.get("beam", -1), |
|
) |
|
generate_kwargs["match_source_len"] = match_source_len |
|
batch_hypos = self.generate(batch_tokens, **generate_kwargs) |
|
|
|
return [ |
|
[(self.decode(hypo["tokens"]), hypo["score"]) for hypo in hypos[:topk]] |
|
for hypos in batch_hypos |
|
] |
|
|