TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import copy
import logging
from typing import Dict, List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.data import encoders
from fairseq.hub_utils import GeneratorHubInterface
from omegaconf import open_dict
logger = logging.getLogger(__name__)
class BARTHubInterface(GeneratorHubInterface):
"""A simple PyTorch Hub interface to BART.
Usage: https://github.com/pytorch/fairseq/tree/main/examples/bart
"""
def __init__(self, cfg, task, model):
super().__init__(cfg, task, [model])
self.model = self.models[0]
def encode(
self, sentence: str, *addl_sentences, no_separator=True
) -> torch.LongTensor:
"""
BPE-encode a sentence (or multiple sentences).
Every sequence begins with a beginning-of-sentence (`<s>`) symbol.
Every sentence ends with an end-of-sentence (`</s>`).
Example (single sentence): `<s> a b c </s>`
Example (sentence pair): `<s> d e f </s> 1 2 3 </s>`
The BPE encoding follows GPT-2. One subtle detail is that the GPT-2 BPE
requires leading spaces. For example::
>>> bart.encode('Hello world').tolist()
[0, 31414, 232, 2]
>>> bart.encode(' world').tolist()
[0, 232, 2]
>>> bart.encode('world').tolist()
[0, 8331, 2]
"""
tokens = self.bpe.encode(sentence)
if len(tokens.split(" ")) > min(self.max_positions) - 2:
tokens = " ".join(tokens.split(" ")[: min(self.max_positions) - 2])
bpe_sentence = "<s> " + tokens + " </s>"
for s in addl_sentences:
bpe_sentence += " </s>" if not no_separator else ""
bpe_sentence += " " + self.bpe.encode(s) + " </s>"
tokens = self.task.source_dictionary.encode_line(bpe_sentence, append_eos=False)
return tokens.long()
def decode(self, tokens: torch.LongTensor):
assert tokens.dim() == 1
tokens = tokens.cpu().numpy()
if tokens[0] == self.task.source_dictionary.bos():
tokens = tokens[1:] # remove <s>
eos_mask = tokens == self.task.source_dictionary.eos()
doc_mask = eos_mask[1:] & eos_mask[:-1]
sentences = np.split(tokens, doc_mask.nonzero()[0] + 1)
sentences = [
self.bpe.decode(self.task.source_dictionary.string(s)) for s in sentences
]
if len(sentences) == 1:
return sentences[0]
return sentences
def _build_sample(self, src_tokens: List[torch.LongTensor]):
# assert torch.is_tensor(src_tokens)
dataset = self.task.build_dataset_for_inference(
src_tokens,
[x.numel() for x in src_tokens],
)
sample = dataset.collater(dataset)
sample = utils.apply_to_sample(lambda tensor: tensor.to(self.device), sample)
return sample
def generate(
self,
tokenized_sentences: List[torch.LongTensor],
*args,
inference_step_args=None,
skip_invalid_size_inputs=False,
**kwargs
) -> List[List[Dict[str, torch.Tensor]]]:
inference_step_args = inference_step_args or {}
if "prefix_tokens" in inference_step_args:
raise NotImplementedError("prefix generation not implemented for BART")
res = []
for batch in self._build_batches(tokenized_sentences, skip_invalid_size_inputs):
src_tokens = batch["net_input"]["src_tokens"]
inference_step_args["prefix_tokens"] = src_tokens.new_full(
(src_tokens.size(0), 1), fill_value=self.task.source_dictionary.bos()
).to(device=self.device)
results = super().generate(
src_tokens,
*args,
inference_step_args=inference_step_args,
skip_invalid_size_inputs=skip_invalid_size_inputs,
**kwargs
)
for id, hypos in zip(batch["id"].tolist(), results):
res.append((id, hypos))
res = [hypos for _, hypos in sorted(res, key=lambda x: x[0])]
return res
def extract_features(
self, tokens: torch.LongTensor, return_all_hiddens: bool = False
) -> torch.Tensor:
if tokens.dim() == 1:
tokens = tokens.unsqueeze(0)
if tokens.size(-1) > min(self.model.max_positions()):
raise ValueError(
"tokens exceeds maximum length: {} > {}".format(
tokens.size(-1), self.model.max_positions()
)
)
tokens.to(device=self.device),
prev_output_tokens = tokens.clone()
prev_output_tokens[:, 0] = tokens.gather(
1,
(tokens.ne(self.task.source_dictionary.pad()).sum(dim=1) - 1).unsqueeze(-1),
).squeeze()
prev_output_tokens[:, 1:] = tokens[:, :-1]
features, extra = self.model(
src_tokens=tokens,
src_lengths=None,
prev_output_tokens=prev_output_tokens,
features_only=True,
return_all_hiddens=return_all_hiddens,
)
if return_all_hiddens:
# convert from T x B x C -> B x T x C
inner_states = extra["inner_states"]
return [inner_state.transpose(0, 1) for inner_state in inner_states]
else:
return features # just the last layer's features
def register_classification_head(
self, name: str, num_classes: int = None, embedding_size: int = None, **kwargs
):
self.model.register_classification_head(
name, num_classes=num_classes, embedding_size=embedding_size, **kwargs
)
def predict(self, head: str, tokens: torch.LongTensor, return_logits: bool = False):
if tokens.dim() == 1:
tokens = tokens.unsqueeze(0)
features = self.extract_features(tokens.to(device=self.device))
sentence_representation = features[
tokens.eq(self.task.source_dictionary.eos()), :
].view(features.size(0), -1, features.size(-1))[:, -1, :]
logits = self.model.classification_heads[head](sentence_representation)
if return_logits:
return logits
return F.log_softmax(logits, dim=-1)
def fill_mask(
self,
masked_inputs: List[str],
topk: int = 5,
match_source_len: bool = True,
**generate_kwargs
):
masked_token = "<mask>"
batch_tokens = []
for masked_input in masked_inputs:
assert (
masked_token in masked_input
), "please add one {} token for the input".format(masked_token)
text_spans = masked_input.split(masked_token)
text_spans_bpe = (
(" {0} ".format(masked_token))
.join([self.bpe.encode(text_span.rstrip()) for text_span in text_spans])
.strip()
)
tokens = self.task.source_dictionary.encode_line(
"<s> " + text_spans_bpe + " </s>",
append_eos=False,
add_if_not_exist=False,
).long()
batch_tokens.append(tokens)
# ensure beam size is at least as big as topk
generate_kwargs["beam"] = max(
topk,
generate_kwargs.get("beam", -1),
)
generate_kwargs["match_source_len"] = match_source_len
batch_hypos = self.generate(batch_tokens, **generate_kwargs)
return [
[(self.decode(hypo["tokens"]), hypo["score"]) for hypo in hypos[:topk]]
for hypos in batch_hypos
]