|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from fairseq import utils |
|
from fairseq.models import ( |
|
FairseqEncoder, |
|
FairseqEncoderDecoderModel, |
|
FairseqIncrementalDecoder, |
|
register_model, |
|
register_model_architecture, |
|
) |
|
from fairseq.modules import ( |
|
AdaptiveSoftmax, |
|
DynamicConv_scripatable as DynamicConv, |
|
FairseqDropout, |
|
LayerNorm, |
|
LightweightConv, |
|
MultiheadAttention, |
|
PositionalEmbedding, |
|
) |
|
from fairseq.utils import safe_hasattr |
|
from torch import Tensor |
|
|
|
|
|
@register_model("lightconv") |
|
class LightConvModel(FairseqEncoderDecoderModel): |
|
""" |
|
LightConv and DynamicConv model from `"Pay Less Attention with Lightweight and Dynamic Convolutions" (Wu, et al, 2019) |
|
<https://openreview.net/pdf?id=SkVhlh09tX>`_. |
|
To use LightConv please set ``--encoder-conv-type lightweight --decoder-conv-type lightweight`` |
|
To use DynamicConv please set ``--encoder-conv-type dynamic --decoder-conv-type dynamic`` |
|
|
|
Args: |
|
encoder (LightConvEncoder): the encoder |
|
decoder (LightConvDecoder): the decoder |
|
|
|
The LightConv model provides the following named architectures and |
|
command-line arguments: |
|
|
|
.. argparse:: |
|
:ref: fairseq.models.lightconv_parser |
|
:prog: |
|
""" |
|
|
|
@classmethod |
|
def hub_models(cls): |
|
|
|
|
|
def moses_subword(path): |
|
return { |
|
'path': path, |
|
'tokenizer': 'moses', |
|
'bpe': 'subword_nmt', |
|
} |
|
|
|
return { |
|
'lightconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.lightconv.tar.gz'), |
|
'dynamicconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.dynamicconv.tar.gz'), |
|
'lightconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv.tar.gz'), |
|
'dynamicconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv.tar.gz'), |
|
'lightconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'), |
|
'dynamicconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'), |
|
'lightconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'), |
|
'dynamicconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'), |
|
'lightconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.lightconv-glu.tar.gz'), |
|
'dynamicconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.dynamicconv-glu.tar.gz'), |
|
'lightconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.lightconv-glu.tar.gz'), |
|
'dynamicconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.dynamicconv-glu.tar.gz'), |
|
} |
|
|
|
|
|
def __init__(self, encoder, decoder): |
|
super().__init__(encoder, decoder) |
|
|
|
@staticmethod |
|
def add_args(parser): |
|
"""Add model-specific arguments to the parser.""" |
|
parser.add_argument( |
|
"--dropout", type=float, metavar="D", help="dropout probability" |
|
) |
|
parser.add_argument( |
|
"--attention-dropout", |
|
type=float, |
|
metavar="D", |
|
help="dropout probability for attention weights", |
|
) |
|
parser.add_argument( |
|
"--relu-dropout", |
|
type=float, |
|
metavar="D", |
|
help="dropout probability after ReLU in FFN", |
|
) |
|
parser.add_argument( |
|
"--input-dropout", |
|
type=float, |
|
metavar="D", |
|
help="dropout probability of the inputs", |
|
) |
|
parser.add_argument( |
|
"--encoder-embed-path", |
|
type=str, |
|
metavar="STR", |
|
help="path to pre-trained encoder embedding", |
|
) |
|
parser.add_argument( |
|
"--encoder-embed-dim", |
|
type=int, |
|
metavar="N", |
|
help="encoder embedding dimension", |
|
) |
|
parser.add_argument( |
|
"--encoder-conv-dim", |
|
type=int, |
|
metavar="N", |
|
help="encoder embedding dimension", |
|
) |
|
parser.add_argument( |
|
"--encoder-ffn-embed-dim", |
|
type=int, |
|
metavar="N", |
|
help="encoder embedding dimension for FFN", |
|
) |
|
parser.add_argument( |
|
"--encoder-layers", type=int, metavar="N", help="num encoder layers" |
|
) |
|
parser.add_argument( |
|
"--encoder-attention-heads", |
|
type=int, |
|
metavar="N", |
|
help="num encoder attention heads or LightConv/DynamicConv heads", |
|
) |
|
parser.add_argument( |
|
"--encoder-normalize-before", |
|
action="store_true", |
|
help="apply layernorm before each encoder block", |
|
) |
|
parser.add_argument( |
|
"--encoder-learned-pos", |
|
action="store_true", |
|
help="use learned positional embeddings in the encoder", |
|
) |
|
parser.add_argument( |
|
"--decoder-embed-path", |
|
type=str, |
|
metavar="STR", |
|
help="path to pre-trained decoder embedding", |
|
) |
|
parser.add_argument( |
|
"--decoder-embed-dim", |
|
type=int, |
|
metavar="N", |
|
help="decoder embedding dimension", |
|
) |
|
parser.add_argument( |
|
"--decoder-conv-dim", |
|
type=int, |
|
metavar="N", |
|
help="decoder embedding dimension", |
|
) |
|
parser.add_argument( |
|
"--decoder-ffn-embed-dim", |
|
type=int, |
|
metavar="N", |
|
help="decoder embedding dimension for FFN", |
|
) |
|
parser.add_argument( |
|
"--decoder-layers", type=int, metavar="N", help="num decoder layers" |
|
) |
|
parser.add_argument( |
|
"--decoder-attention-heads", |
|
type=int, |
|
metavar="N", |
|
help="num decoder attention heads or LightConv/DynamicConv heads", |
|
) |
|
parser.add_argument( |
|
"--decoder-learned-pos", |
|
action="store_true", |
|
help="use learned positional embeddings in the decoder", |
|
) |
|
parser.add_argument( |
|
"--decoder-normalize-before", |
|
action="store_true", |
|
help="apply layernorm before each decoder block", |
|
) |
|
parser.add_argument( |
|
"--share-decoder-input-output-embed", |
|
action="store_true", |
|
help="share decoder input and output embeddings", |
|
) |
|
parser.add_argument( |
|
"--share-all-embeddings", |
|
action="store_true", |
|
help="share encoder, decoder and output embeddings" |
|
" (requires shared dictionary and embed dim)", |
|
) |
|
parser.add_argument( |
|
"--adaptive-softmax-cutoff", |
|
metavar="EXPR", |
|
help="comma separated list of adaptive softmax cutoff points. " |
|
"Must be used with adaptive_loss criterion", |
|
), |
|
parser.add_argument( |
|
"--adaptive-softmax-dropout", |
|
type=float, |
|
metavar="D", |
|
help="sets adaptive softmax dropout for the tail projections", |
|
) |
|
|
|
"""LightConv and DynamicConv arguments""" |
|
parser.add_argument( |
|
"--encoder-kernel-size-list", |
|
type=lambda x: utils.eval_str_list(x, int), |
|
help='list of kernel size (default: "[3,7,15,31,31,31,31]")', |
|
) |
|
parser.add_argument( |
|
"--decoder-kernel-size-list", |
|
type=lambda x: utils.eval_str_list(x, int), |
|
help='list of kernel size (default: "[3,7,15,31,31,31]")', |
|
) |
|
parser.add_argument( |
|
"--encoder-glu", type=utils.eval_bool, help="glu after in proj" |
|
) |
|
parser.add_argument( |
|
"--decoder-glu", type=utils.eval_bool, help="glu after in proj" |
|
) |
|
parser.add_argument( |
|
"--encoder-conv-type", |
|
default="dynamic", |
|
type=str, |
|
choices=["dynamic", "lightweight"], |
|
help="type of convolution", |
|
) |
|
parser.add_argument( |
|
"--decoder-conv-type", |
|
default="dynamic", |
|
type=str, |
|
choices=["dynamic", "lightweight"], |
|
help="type of convolution", |
|
) |
|
parser.add_argument("--weight-softmax", default=True, type=utils.eval_bool) |
|
parser.add_argument( |
|
"--weight-dropout", |
|
type=float, |
|
metavar="D", |
|
help="dropout probability for conv weights", |
|
) |
|
|
|
@classmethod |
|
def build_model(cls, args, task): |
|
"""Build a new model instance.""" |
|
|
|
|
|
base_architecture(args) |
|
|
|
if not safe_hasattr(args, "max_source_positions"): |
|
args.max_source_positions = 1024 |
|
if not safe_hasattr(args, "max_target_positions"): |
|
args.max_target_positions = 1024 |
|
|
|
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary |
|
|
|
def build_embedding(dictionary, embed_dim, path=None): |
|
num_embeddings = len(dictionary) |
|
padding_idx = dictionary.pad() |
|
emb = Embedding(num_embeddings, embed_dim, padding_idx) |
|
|
|
if path: |
|
embed_dict = utils.parse_embedding(path) |
|
utils.load_embedding(embed_dict, dictionary, emb) |
|
return emb |
|
|
|
if args.share_all_embeddings: |
|
if src_dict != tgt_dict: |
|
raise RuntimeError( |
|
"--share-all-embeddings requires a joined dictionary" |
|
) |
|
if args.encoder_embed_dim != args.decoder_embed_dim: |
|
raise RuntimeError( |
|
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" |
|
) |
|
if args.decoder_embed_path and ( |
|
args.decoder_embed_path != args.encoder_embed_path |
|
): |
|
raise RuntimeError( |
|
"--share-all-embeddings not compatible with --decoder-embed-path" |
|
) |
|
encoder_embed_tokens = build_embedding( |
|
src_dict, args.encoder_embed_dim, args.encoder_embed_path |
|
) |
|
decoder_embed_tokens = encoder_embed_tokens |
|
args.share_decoder_input_output_embed = True |
|
else: |
|
encoder_embed_tokens = build_embedding( |
|
src_dict, args.encoder_embed_dim, args.encoder_embed_path |
|
) |
|
decoder_embed_tokens = build_embedding( |
|
tgt_dict, args.decoder_embed_dim, args.decoder_embed_path |
|
) |
|
|
|
encoder = LightConvEncoder(args, src_dict, encoder_embed_tokens) |
|
decoder = LightConvDecoder(args, tgt_dict, decoder_embed_tokens) |
|
return LightConvModel(encoder, decoder) |
|
|
|
def forward( |
|
self, |
|
src_tokens: Tensor, |
|
src_lengths: Tensor, |
|
prev_output_tokens: Tensor, |
|
): |
|
""" |
|
(The forward method inherited from the base class has a **kwargs |
|
argument in its input, which is not supported in torchscript. This |
|
method overwrites the forward method definition without **kwargs.) |
|
|
|
Run the forward pass for an encoder-decoder model. |
|
|
|
First feed a batch of source tokens through the encoder. Then, feed the |
|
encoder output and previous decoder outputs (i.e., teacher forcing) to |
|
the decoder to produce the next outputs:: |
|
|
|
encoder_out = self.encoder(src_tokens, src_lengths) |
|
return self.decoder(prev_output_tokens, encoder_out) |
|
|
|
Args: |
|
src_tokens (LongTensor): tokens in the source language of shape |
|
`(batch, src_len)` |
|
src_lengths (LongTensor): source sentence lengths of shape `(batch)` |
|
prev_output_tokens (LongTensor): previous decoder outputs of shape |
|
`(batch, tgt_len)`, for teacher forcing |
|
|
|
Returns: |
|
tuple: |
|
- the decoder's output of shape `(batch, tgt_len, vocab)` |
|
- a dictionary with any model-specific outputs |
|
""" |
|
encoder_out = self.encoder(src_tokens, src_lengths) |
|
decoder_out = self.decoder(prev_output_tokens, encoder_out=encoder_out) |
|
return decoder_out |
|
|
|
|
|
class LightConvEncoder(FairseqEncoder): |
|
""" |
|
LightConv encoder consisting of *args.encoder_layers* layers. Each layer |
|
is a :class:`LightConvEncoderLayer`. |
|
|
|
Args: |
|
args (argparse.Namespace): parsed command-line arguments |
|
dictionary (~fairseq.data.Dictionary): encoding dictionary |
|
embed_tokens (torch.nn.Embedding): input embedding |
|
""" |
|
|
|
def __init__(self, args, dictionary, embed_tokens): |
|
super().__init__(dictionary) |
|
self.dropout_module = FairseqDropout( |
|
args.dropout, module_name=self.__class__.__name__ |
|
) |
|
|
|
embed_dim = embed_tokens.embedding_dim |
|
self.padding_idx = embed_tokens.padding_idx |
|
self.max_source_positions = args.max_source_positions |
|
|
|
self.embed_tokens = embed_tokens |
|
self.embed_scale = math.sqrt(embed_dim) |
|
self.embed_positions = ( |
|
PositionalEmbedding( |
|
args.max_source_positions, |
|
embed_dim, |
|
self.padding_idx, |
|
learned=args.encoder_learned_pos, |
|
) |
|
if not args.no_token_positional_embeddings |
|
else None |
|
) |
|
|
|
self.layers = nn.ModuleList([]) |
|
self.layers.extend( |
|
[ |
|
LightConvEncoderLayer( |
|
args, kernel_size=args.encoder_kernel_size_list[i] |
|
) |
|
for i in range(args.encoder_layers) |
|
] |
|
) |
|
self.register_buffer("version", torch.Tensor([2])) |
|
self.normalize = args.encoder_normalize_before |
|
if self.normalize: |
|
self.layer_norm = LayerNorm(embed_dim) |
|
else: |
|
self.layer_norm = None |
|
|
|
def forward( |
|
self, src_tokens: Tensor, src_lengths: Optional[Tensor] = None |
|
) -> Dict[str, List[Tensor]]: |
|
""" |
|
Args: |
|
src_tokens (LongTensor): tokens in the source language of shape |
|
`(batch, src_len)` |
|
|
|
Returns: |
|
dict: |
|
- **encoder_out** (Tensor): the last encoder layer's output of |
|
shape `(src_len, batch, embed_dim)` |
|
- **encoder_padding_mask** (ByteTensor): the positions of |
|
padding elements of shape `(batch, src_len)` |
|
""" |
|
|
|
x = self.embed_scale * self.embed_tokens(src_tokens) |
|
if self.embed_positions is not None: |
|
x += self.embed_positions(src_tokens) |
|
x = self.dropout_module(x) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
|
|
encoder_padding_mask = src_tokens.eq(self.padding_idx) |
|
if not encoder_padding_mask.any(): |
|
encoder_mask = None |
|
else: |
|
encoder_mask = encoder_padding_mask |
|
|
|
|
|
for layer in self.layers: |
|
x = layer(x, encoder_mask) |
|
|
|
if self.layer_norm is not None: |
|
x = self.layer_norm(x) |
|
|
|
output_dict: Dict[str, List[Tensor]] = {} |
|
if src_lengths is not None: |
|
output_dict["src_lengths"] = [src_lengths] |
|
output_dict["encoder_out"] = [x] |
|
if encoder_mask is not None: |
|
output_dict["encoder_padding_mask"] = [encoder_mask] |
|
|
|
return output_dict |
|
|
|
@torch.jit.export |
|
def reorder_encoder_out( |
|
self, encoder_out: Dict[str, List[Tensor]], new_order: Tensor |
|
): |
|
""" |
|
Reorder encoder output according to *new_order*. |
|
|
|
Args: |
|
encoder_out: output from the ``forward()`` method |
|
new_order (LongTensor): desired order |
|
|
|
Returns: |
|
*encoder_out* rearranged according to *new_order* |
|
""" |
|
if len(encoder_out["encoder_out"]) == 0: |
|
encoder = [] |
|
else: |
|
encoder = [encoder_out["encoder_out"][0].index_select(1, new_order)] |
|
output_dict = {"encoder_out": encoder} |
|
|
|
if ("encoder_padding_mask" not in encoder_out) or ( |
|
len(encoder_out["encoder_padding_mask"]) == 0 |
|
): |
|
encoder_padding_mask = [] |
|
else: |
|
encoder_padding_mask = [ |
|
encoder_out["encoder_padding_mask"][0].index_select(0, new_order) |
|
] |
|
output_dict["encoder_padding_mask"] = encoder_padding_mask |
|
return output_dict |
|
|
|
def max_positions(self): |
|
"""Maximum input length supported by the encoder.""" |
|
if self.embed_positions is None: |
|
return self.max_source_positions |
|
return min(self.max_source_positions, self.embed_positions.max_positions) |
|
|
|
|
|
class LightConvDecoder(FairseqIncrementalDecoder): |
|
""" |
|
LightConv decoder consisting of *args.decoder_layers* layers. Each layer |
|
is a :class:`LightConvDecoderLayer`. |
|
|
|
Args: |
|
args (argparse.Namespace): parsed command-line arguments |
|
dictionary (~fairseq.data.Dictionary): decoding dictionary |
|
embed_tokens (torch.nn.Embedding): output embedding |
|
no_encoder_attn (bool, optional): whether to attend to encoder outputs. |
|
Default: ``False`` |
|
""" |
|
|
|
def __init__( |
|
self, args, dictionary, embed_tokens, no_encoder_attn=False, final_norm=True |
|
): |
|
super().__init__(dictionary) |
|
self.dropout_module = FairseqDropout( |
|
args.dropout, module_name=self.__class__.__name__ |
|
) |
|
self.share_input_output_embed = args.share_decoder_input_output_embed |
|
|
|
input_embed_dim = embed_tokens.embedding_dim |
|
embed_dim = args.decoder_embed_dim |
|
output_embed_dim = args.decoder_output_dim |
|
|
|
padding_idx = embed_tokens.padding_idx |
|
self.max_target_positions = args.max_target_positions |
|
|
|
self.embed_tokens = embed_tokens |
|
self.embed_scale = math.sqrt(embed_dim) |
|
|
|
self.project_in_dim = ( |
|
Linear(input_embed_dim, embed_dim, bias=False) |
|
if embed_dim != input_embed_dim |
|
else None |
|
) |
|
|
|
self.embed_positions = ( |
|
PositionalEmbedding( |
|
args.max_target_positions, |
|
embed_dim, |
|
padding_idx, |
|
learned=args.decoder_learned_pos, |
|
) |
|
if not args.no_token_positional_embeddings |
|
else None |
|
) |
|
|
|
self.layers = nn.ModuleList([]) |
|
self.layers.extend( |
|
[ |
|
LightConvDecoderLayer( |
|
args, |
|
no_encoder_attn, |
|
kernel_size=args.decoder_kernel_size_list[i], |
|
dictionary=dictionary, |
|
) |
|
for i in range(args.decoder_layers) |
|
] |
|
) |
|
|
|
self.adaptive_softmax = None |
|
self.output_projection = None |
|
|
|
self.project_out_dim = ( |
|
Linear(embed_dim, output_embed_dim, bias=False) |
|
if embed_dim != output_embed_dim and not args.tie_adaptive_weights |
|
else None |
|
) |
|
|
|
if args.adaptive_softmax_cutoff is not None: |
|
self.adaptive_softmax = AdaptiveSoftmax( |
|
len(dictionary), |
|
output_embed_dim, |
|
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int), |
|
dropout=args.adaptive_softmax_dropout, |
|
adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, |
|
factor=args.adaptive_softmax_factor, |
|
tie_proj=args.tie_adaptive_proj, |
|
) |
|
elif self.share_input_output_embed: |
|
self.output_projection = nn.Linear( |
|
self.embed_tokens.weight.shape[1], |
|
self.embed_tokens.weight.shape[0], |
|
bias=False, |
|
) |
|
self.output_projection.weight = self.embed_tokens.weight |
|
|
|
else: |
|
self.output_projection = nn.Linear( |
|
output_embed_dim, len(dictionary), bias=False |
|
) |
|
nn.init.normal_( |
|
self.output_projection.weight, mean=0, std=output_embed_dim**-0.5 |
|
) |
|
self.register_buffer("version", torch.Tensor([2])) |
|
self.normalize = args.decoder_normalize_before and final_norm |
|
if self.normalize: |
|
self.layer_norm = LayerNorm(embed_dim) |
|
else: |
|
self.layer_norm = None |
|
|
|
def forward( |
|
self, |
|
prev_output_tokens: Tensor, |
|
encoder_out: Optional[Dict[str, List[Tensor]]] = None, |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, |
|
src_lengths: Optional[Any] = None, |
|
): |
|
""" |
|
Args: |
|
prev_output_tokens (LongTensor): previous decoder outputs of shape |
|
`(batch, tgt_len)`, for teacher forcing |
|
encoder_out (Tensor, optional): output from the encoder, used for |
|
encoder-side attention |
|
incremental_state (dict): dictionary used for storing state during |
|
:ref:`Incremental decoding` |
|
|
|
Returns: |
|
tuple: |
|
- the last decoder layer's output of shape `(batch, tgt_len, |
|
vocab)` |
|
- the last decoder layer's attention weights of shape `(batch, |
|
tgt_len, src_len)` |
|
""" |
|
|
|
positions = ( |
|
self.embed_positions( |
|
prev_output_tokens, |
|
incremental_state=incremental_state, |
|
) |
|
if self.embed_positions is not None |
|
else None |
|
) |
|
|
|
if incremental_state is not None: |
|
prev_output_tokens = prev_output_tokens[:, -1:] |
|
if positions is not None: |
|
positions = positions[:, -1:] |
|
|
|
|
|
x = self.embed_scale * self.embed_tokens(prev_output_tokens.contiguous()) |
|
|
|
if self.project_in_dim is not None: |
|
x = self.project_in_dim(x) |
|
|
|
if positions is not None: |
|
x += positions |
|
x = self.dropout_module(x) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
attn = None |
|
|
|
inner_states: List[Optional[Tensor]] = [x] |
|
|
|
|
|
attn: Optional[Tensor] = None |
|
for layer in self.layers: |
|
encoder: Optional[Tensor] = None |
|
encoder_padding_mask: Optional[Tensor] = None |
|
if encoder_out is not None: |
|
if len(encoder_out["encoder_out"]) > 0: |
|
encoder = encoder_out["encoder_out"][0] |
|
if ( |
|
"encoder_padding_mask" in encoder_out |
|
and len(encoder_out["encoder_padding_mask"]) > 0 |
|
): |
|
encoder_padding_mask = encoder_out["encoder_padding_mask"][0] |
|
x, attn = layer( |
|
x, |
|
encoder, |
|
encoder_padding_mask, |
|
incremental_state, |
|
) |
|
inner_states.append(x) |
|
|
|
if self.layer_norm is not None: |
|
x = self.layer_norm(x) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
if self.project_out_dim is not None: |
|
x = self.project_out_dim(x) |
|
|
|
if self.adaptive_softmax is None: |
|
|
|
x = self.output_projection(x) |
|
|
|
return x, {"attn": [attn], "inner_states": inner_states} |
|
|
|
def max_positions(self): |
|
"""Maximum output length supported by the decoder.""" |
|
if self.embed_positions is None: |
|
return self.max_target_positions |
|
return min(self.max_target_positions, self.embed_positions.max_positions) |
|
|
|
def buffered_future_mask(self, tensor): |
|
dim = tensor.size(0) |
|
if ( |
|
not hasattr(self, "_future_mask") |
|
or self._future_mask is None |
|
or self._future_mask.device != tensor.device |
|
): |
|
self._future_mask = torch.triu( |
|
utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 |
|
) |
|
if self._future_mask.size(0) < dim: |
|
self._future_mask = torch.triu( |
|
utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1 |
|
) |
|
return self._future_mask[:dim, :dim] |
|
|
|
|
|
class LightConvEncoderLayer(nn.Module): |
|
"""Encoder layer block. |
|
|
|
Args: |
|
args (argparse.Namespace): parsed command-line arguments |
|
kernel_size: kernel size of the convolution |
|
""" |
|
|
|
def __init__(self, args, kernel_size=0): |
|
super().__init__() |
|
self.embed_dim = args.encoder_embed_dim |
|
self.conv_dim = args.encoder_conv_dim |
|
padding_l = ( |
|
kernel_size // 2 |
|
if kernel_size % 2 == 1 |
|
else ((kernel_size - 1) // 2, kernel_size // 2) |
|
) |
|
|
|
if args.encoder_glu: |
|
self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim) |
|
self.act = nn.GLU() |
|
else: |
|
self.linear1 = Linear(self.embed_dim, self.conv_dim) |
|
self.act = None |
|
if args.encoder_conv_type == "lightweight": |
|
self.conv = LightweightConv( |
|
self.conv_dim, |
|
kernel_size, |
|
padding_l=padding_l, |
|
weight_softmax=args.weight_softmax, |
|
num_heads=args.encoder_attention_heads, |
|
weight_dropout=args.weight_dropout, |
|
) |
|
elif args.encoder_conv_type == "dynamic": |
|
self.conv = DynamicConv( |
|
self.conv_dim, |
|
kernel_size, |
|
padding_l=padding_l, |
|
weight_softmax=args.weight_softmax, |
|
num_heads=args.encoder_attention_heads, |
|
weight_dropout=args.weight_dropout, |
|
) |
|
else: |
|
raise NotImplementedError |
|
self.linear2 = Linear(self.conv_dim, self.embed_dim) |
|
|
|
self.dropout_module = FairseqDropout( |
|
args.dropout, module_name=self.__class__.__name__ |
|
) |
|
self.relu_dropout_module = FairseqDropout( |
|
args.relu_dropout, module_name=self.__class__.__name__ |
|
) |
|
self.input_dropout_module = FairseqDropout( |
|
args.input_dropout, module_name=self.__class__.__name__ |
|
) |
|
self.normalize_before = args.encoder_normalize_before |
|
self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim) |
|
self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim) |
|
self.layer_norm1 = LayerNorm(self.embed_dim) |
|
self.layer_norm2 = LayerNorm(self.embed_dim) |
|
|
|
def forward(self, x, encoder_padding_mask: Optional[Tensor] = None) -> Tensor: |
|
""" |
|
Args: |
|
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` |
|
encoder_padding_mask (ByteTensor): binary ByteTensor of shape |
|
`(batch, src_len)` where padding elements are indicated by ``1``. |
|
|
|
Returns: |
|
encoded output of shape `(batch, src_len, embed_dim)` |
|
""" |
|
residual = x |
|
normalize = self.maybe_layer_norm(before=True) |
|
if normalize: |
|
x = self.layer_norm1(x) |
|
x = self.input_dropout_module(x) |
|
x = self.linear1(x) |
|
if self.act is not None: |
|
x = self.act(x) |
|
if encoder_padding_mask is not None: |
|
x = x.masked_fill(encoder_padding_mask.transpose(0, 1).unsqueeze(2), 0) |
|
x = self.conv(x) |
|
x = self.linear2(x) |
|
x = self.dropout_module(x) |
|
x = residual + x |
|
normalize = self.maybe_layer_norm(after=True) |
|
if normalize: |
|
x = self.layer_norm1(x) |
|
|
|
residual = x |
|
normalize = self.maybe_layer_norm(before=True) |
|
if normalize: |
|
x = self.layer_norm2(x) |
|
x = F.relu(self.fc1(x)) |
|
x = self.relu_dropout_module(x) |
|
x = self.fc2(x) |
|
x = self.dropout_module(x) |
|
x = residual + x |
|
normalize = self.maybe_layer_norm(after=True) |
|
if normalize: |
|
x = self.layer_norm2(x) |
|
return x |
|
|
|
def maybe_layer_norm(self, before: bool = False, after: bool = False): |
|
assert before ^ after, "Incorrect arguments" |
|
return after ^ self.normalize_before |
|
|
|
def extra_repr(self): |
|
return ( |
|
"dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format( |
|
self.dropout_module.p, |
|
self.relu_dropout_module.p, |
|
self.input_dropout_module.p, |
|
self.normalize_before, |
|
) |
|
) |
|
|
|
|
|
class LightConvDecoderLayer(nn.Module): |
|
"""Decoder layer block. |
|
|
|
Args: |
|
args (argparse.Namespace): parsed command-line arguments |
|
no_encoder_attn (bool, optional): whether to attend to encoder outputs. |
|
Default: ``False`` |
|
kernel_size: kernel size of the convolution |
|
""" |
|
|
|
def __init__(self, args, no_encoder_attn=False, kernel_size=0, dictionary=None): |
|
super().__init__() |
|
self.embed_dim = args.decoder_embed_dim |
|
self.conv_dim = args.decoder_conv_dim |
|
if args.decoder_glu: |
|
self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim) |
|
self.act = nn.GLU() |
|
else: |
|
self.linear1 = Linear(self.embed_dim, self.conv_dim) |
|
self.act = None |
|
if args.decoder_conv_type == "lightweight": |
|
self.conv = LightweightConv( |
|
self.conv_dim, |
|
kernel_size, |
|
padding_l=kernel_size - 1, |
|
weight_softmax=args.weight_softmax, |
|
num_heads=args.decoder_attention_heads, |
|
weight_dropout=args.weight_dropout, |
|
) |
|
elif args.decoder_conv_type == "dynamic": |
|
self.conv = DynamicConv( |
|
self.conv_dim, |
|
kernel_size, |
|
padding_l=kernel_size - 1, |
|
weight_softmax=args.weight_softmax, |
|
num_heads=args.decoder_attention_heads, |
|
weight_dropout=args.weight_dropout, |
|
) |
|
else: |
|
raise NotImplementedError |
|
self.linear2 = Linear(self.conv_dim, self.embed_dim) |
|
|
|
self.dropout_module = FairseqDropout( |
|
args.dropout, module_name=self.__class__.__name__ |
|
) |
|
self.relu_dropout_module = FairseqDropout( |
|
args.relu_dropout, module_name=self.__class__.__name__ |
|
) |
|
self.input_dropout_module = FairseqDropout( |
|
args.input_dropout, module_name=self.__class__.__name__ |
|
) |
|
self.normalize_before = args.decoder_normalize_before |
|
|
|
self.conv_layer_norm = LayerNorm(self.embed_dim) |
|
|
|
if no_encoder_attn: |
|
self.encoder_attn = None |
|
self.encoder_attn_layer_norm = None |
|
else: |
|
self.encoder_attn = MultiheadAttention( |
|
self.embed_dim, |
|
args.decoder_attention_heads, |
|
dropout=args.attention_dropout, |
|
encoder_decoder_attention=True, |
|
dictionary=dictionary, |
|
) |
|
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim) |
|
|
|
self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) |
|
self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) |
|
|
|
self.final_layer_norm = LayerNorm(self.embed_dim) |
|
self.need_attn = True |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
encoder_out: Optional[Tensor], |
|
encoder_padding_mask: Optional[Tensor], |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], |
|
prev_conv_state: Optional[Tensor] = None, |
|
prev_attn_state: Optional[Tuple[Tensor, Tensor]] = None, |
|
conv_mask: Optional[Tensor] = None, |
|
conv_padding_mask: Optional[Tensor] = None, |
|
): |
|
""" |
|
Args: |
|
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` |
|
encoder_padding_mask (ByteTensor): binary ByteTensor of shape |
|
`(batch, src_len)` where padding elements are indicated by ``1``. |
|
|
|
Returns: |
|
encoded output of shape `(batch, src_len, embed_dim)` |
|
""" |
|
residual = x |
|
normalize = self.maybe_layer_norm(before=True) |
|
if normalize: |
|
x = self.conv_layer_norm(x) |
|
if prev_conv_state is not None: |
|
self.conv._set_input_buffer(incremental_state, prev_conv_state) |
|
x = self.input_dropout_module(x) |
|
x = self.linear1(x) |
|
if self.act is not None: |
|
x = self.act(x) |
|
x = self.conv(x, incremental_state=incremental_state) |
|
x = self.linear2(x) |
|
x = self.dropout_module(x) |
|
x = residual + x |
|
normalize = self.maybe_layer_norm(after=True) |
|
if normalize: |
|
x = self.conv_layer_norm(x) |
|
|
|
attn: Optional[Tensor] = None |
|
if self.encoder_attn is not None: |
|
residual = x |
|
normalize = self.maybe_layer_norm(before=True) |
|
if normalize: |
|
x = self.encoder_attn_layer_norm(x) |
|
|
|
if prev_attn_state is not None: |
|
saved_state: Dict[str, Optional[Tensor]] = { |
|
"prev_key": prev_attn_state[0], |
|
"prev_value": prev_attn_state[1], |
|
} |
|
self.encoder_attn._set_input_buffer(incremental_state, saved_state) |
|
x, attn = self.encoder_attn( |
|
query=x, |
|
key=encoder_out, |
|
value=encoder_out, |
|
key_padding_mask=encoder_padding_mask, |
|
incremental_state=incremental_state, |
|
static_kv=True, |
|
need_weights=(not self.training and self.need_attn), |
|
) |
|
x = self.dropout_module(x) |
|
x = residual + x |
|
normalize = self.maybe_layer_norm(after=True) |
|
if normalize: |
|
x = self.encoder_attn_layer_norm(x) |
|
|
|
residual = x |
|
normalize = self.maybe_layer_norm(before=True) |
|
if normalize: |
|
x = self.final_layer_norm(x) |
|
x = F.relu(self.fc1(x)) |
|
x = self.relu_dropout_module(x) |
|
x = self.fc2(x) |
|
x = self.dropout_module(x) |
|
x = residual + x |
|
normalize = self.maybe_layer_norm(after=True) |
|
if normalize: |
|
x = self.final_layer_norm(x) |
|
return x, attn |
|
|
|
def maybe_layer_norm(self, before: bool = False, after: bool = False): |
|
assert before ^ after, "Incorrect usage" |
|
return after ^ self.normalize_before |
|
|
|
def make_generation_fast_(self, need_attn: bool = False, **kwargs): |
|
self.need_attn = need_attn |
|
|
|
def extra_repr(self): |
|
return ( |
|
"dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format( |
|
self.dropout_module.p, |
|
self.relu_dropout_module.p, |
|
self.input_dropout_module.p, |
|
self.normalize_before, |
|
) |
|
) |
|
|
|
|
|
def Embedding(num_embeddings, embedding_dim, padding_idx): |
|
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) |
|
nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) |
|
nn.init.constant_(m.weight[padding_idx], 0) |
|
return m |
|
|
|
|
|
def Linear(in_features, out_features, bias=True): |
|
m = nn.Linear(in_features, out_features, bias) |
|
nn.init.xavier_uniform_(m.weight) |
|
if bias: |
|
nn.init.constant_(m.bias, 0.0) |
|
return m |
|
|
|
|
|
@register_model_architecture("lightconv", "lightconv") |
|
def base_architecture(args): |
|
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) |
|
args.encoder_layers = getattr(args, "encoder_layers", 7) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) |
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) |
|
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) |
|
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) |
|
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) |
|
args.decoder_ffn_embed_dim = getattr( |
|
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim |
|
) |
|
args.decoder_layers = getattr(args, "decoder_layers", 6) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) |
|
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) |
|
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) |
|
args.attention_dropout = getattr(args, "attention_dropout", 0.0) |
|
args.relu_dropout = getattr(args, "relu_dropout", 0.0) |
|
args.dropout = getattr(args, "dropout", 0.1) |
|
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) |
|
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) |
|
args.share_decoder_input_output_embed = getattr( |
|
args, "share_decoder_input_output_embed", False |
|
) |
|
args.share_all_embeddings = getattr(args, "share_all_embeddings", False) |
|
args.no_token_positional_embeddings = getattr( |
|
args, "no_token_positional_embeddings", False |
|
) |
|
|
|
args.decoder_output_dim = getattr( |
|
args, "decoder_output_dim", args.decoder_embed_dim |
|
) |
|
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) |
|
|
|
args.encoder_conv_dim = getattr(args, "encoder_conv_dim", args.encoder_embed_dim) |
|
args.decoder_conv_dim = getattr(args, "decoder_conv_dim", args.decoder_embed_dim) |
|
|
|
args.encoder_kernel_size_list = getattr( |
|
args, "encoder_kernel_size_list", [3, 7, 15, 31, 31, 31, 31] |
|
) |
|
args.decoder_kernel_size_list = getattr( |
|
args, "decoder_kernel_size_list", [3, 7, 15, 31, 31, 31] |
|
) |
|
if len(args.encoder_kernel_size_list) == 1: |
|
args.encoder_kernel_size_list = ( |
|
args.encoder_kernel_size_list * args.encoder_layers |
|
) |
|
if len(args.decoder_kernel_size_list) == 1: |
|
args.decoder_kernel_size_list = ( |
|
args.decoder_kernel_size_list * args.decoder_layers |
|
) |
|
assert ( |
|
len(args.encoder_kernel_size_list) == args.encoder_layers |
|
), "encoder_kernel_size_list doesn't match encoder_layers" |
|
assert ( |
|
len(args.decoder_kernel_size_list) == args.decoder_layers |
|
), "decoder_kernel_size_list doesn't match decoder_layers" |
|
args.encoder_glu = getattr(args, "encoder_glu", True) |
|
args.decoder_glu = getattr(args, "decoder_glu", True) |
|
args.input_dropout = getattr(args, "input_dropout", 0.1) |
|
args.weight_dropout = getattr(args, "weight_dropout", args.attention_dropout) |
|
|
|
|
|
@register_model_architecture("lightconv", "lightconv_iwslt_de_en") |
|
def lightconv_iwslt_de_en(args): |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) |
|
args.encoder_layers = getattr(args, "encoder_layers", 7) |
|
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) |
|
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) |
|
args.decoder_layers = getattr(args, "decoder_layers", 6) |
|
args.attention_dropout = getattr(args, "attention_dropout", 0.1) |
|
args.weight_dropout = getattr(args, "weight_dropout", 0.1) |
|
args.encoder_glu = getattr(args, "encoder_glu", False) |
|
args.decoder_glu = getattr(args, "decoder_glu", False) |
|
args.input_dropout = getattr(args, "input_dropout", 0.0) |
|
base_architecture(args) |
|
|
|
|
|
@register_model_architecture("lightconv", "lightconv_wmt_en_de") |
|
def lightconv_wmt_en_de(args): |
|
base_architecture(args) |
|
|
|
|
|
@register_model_architecture("lightconv", "lightconv_wmt_en_de_big") |
|
def lightconv_wmt_en_de_big(args): |
|
args.attention_dropout = getattr(args, "attention_dropout", 0.1) |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) |
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) |
|
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) |
|
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) |
|
args.dropout = getattr(args, "dropout", 0.3) |
|
base_architecture(args) |
|
|
|
|
|
@register_model_architecture("lightconv", "lightconv_wmt_en_fr_big") |
|
def lightconv_wmt_en_fr_big(args): |
|
args.dropout = getattr(args, "dropout", 0.1) |
|
lightconv_wmt_en_de_big(args) |
|
|
|
|
|
@register_model_architecture("lightconv", "lightconv_wmt_zh_en_big") |
|
def lightconv_wmt_zh_en_big(args): |
|
args.dropout = getattr(args, "dropout", 0.2) |
|
args.attention_dropout = getattr(args, "attention_dropout", 0.2) |
|
args.weight_dropout = getattr(args, "weight_dropout", 0.2) |
|
lightconv_wmt_en_de_big(args) |
|
|