|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
import logging |
|
import math |
|
from typing import Optional, Tuple |
|
from omegaconf import II |
|
import sys |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from fairseq.dataclass import ChoiceEnum, FairseqDataclass |
|
from fairseq.models import BaseFairseqModel, register_model |
|
from fairseq.modules import ( |
|
Fp32GroupNorm, |
|
Fp32LayerNorm, |
|
GumbelVectorQuantizer, |
|
KmeansVectorQuantizer, |
|
TransposeLast, |
|
) |
|
from fairseq.tasks import FairseqTask |
|
from fairseq.utils import buffered_arange |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
AGGREGATOR_CHOICES = ChoiceEnum(["cnn", "gru"]) |
|
PROJECT_FEATURES_CHOICES = ChoiceEnum(["none", "same", "new"]) |
|
ACTIVATION_CHOICES = ChoiceEnum(["relu", "gelu"]) |
|
VQ_TYPE_CHOICES = ChoiceEnum(["none", "gumbel", "kmeans"]) |
|
|
|
|
|
@dataclass |
|
class Wav2VecConfig(FairseqDataclass): |
|
prediction_steps: int = field( |
|
default=12, metadata={"help": "number of steps ahead to predict"} |
|
) |
|
sample_distance: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "sample distance from target. does not work properly with cross-sampling" |
|
}, |
|
) |
|
cross_sample_negatives: int = field( |
|
default=0, metadata={"help": "num of cross sampled negatives"} |
|
) |
|
num_negatives: int = field( |
|
default=10, metadata={"help": "num of sampled negatives"} |
|
) |
|
conv_feature_layers: str = field( |
|
default="[(512, 10, 5), (512, 8, 4), (512, 4, 2), (512, 4, 2), (512, 4, 2), (512, 1, 1), (512, 1, 1), (512, 1, 1)]", |
|
metadata={ |
|
"help": "convolutional feature extraction layers [(dim, kernel_size, stride), ...]" |
|
}, |
|
) |
|
conv_aggregator_layers: str = field( |
|
default="[(512, 2, 1), (512, 3, 1), (512, 4, 1), (512, 5, 1), (512, 6, 1), (512, 7, 1), (512, 8, 1), (512, 9, 1), (512, 10, 1), (512, 11, 1), (512, 12, 1), (512, 13, 1)]", |
|
metadata={ |
|
"help": "convolutional aggregator layers [(dim, kernel_size, stride), ...]" |
|
}, |
|
) |
|
dropout: float = field( |
|
default=0.0, metadata={"help": "dropout to apply within the model"} |
|
) |
|
dropout_features: float = field( |
|
default=0.0, metadata={"help": "dropout to apply to the features"} |
|
) |
|
dropout_agg: float = field( |
|
default=0.0, metadata={"help": "dropout to apply after aggregation step"} |
|
) |
|
aggregator: AGGREGATOR_CHOICES = field( |
|
default="cnn", metadata={"help": "type of aggregator to use"} |
|
) |
|
gru_dim: int = field(default=512, metadata={"help": "GRU dimensionality"}) |
|
no_conv_bias: bool = field( |
|
default=False, metadata={"help": "if set, does not learn bias for conv layers"} |
|
) |
|
agg_zero_pad: bool = field( |
|
default=False, |
|
metadata={"help": "if set, zero pads in aggregator instead of repl pad"}, |
|
) |
|
skip_connections_feat: bool = field( |
|
default=False, |
|
metadata={"help": "if set, adds skip connections to the feature extractor"}, |
|
) |
|
skip_connections_agg: bool = field( |
|
default=True, |
|
metadata={"help": "if set, adds skip connections to the aggregator"}, |
|
) |
|
residual_scale: float = field( |
|
default=0.5, metadata={"help": "scales residual by sqrt(value)"} |
|
) |
|
log_compression: bool = field( |
|
default=True, |
|
metadata={"help": "if set, adds a log compression to feature extractor"}, |
|
) |
|
balanced_classes: bool = field( |
|
default=False, |
|
metadata={"help": "if set, loss is scaled to balance for number of negatives"}, |
|
) |
|
project_features: PROJECT_FEATURES_CHOICES = field( |
|
default="none", |
|
metadata={ |
|
"help": "if not none, features are projected using the (same or new) aggregator" |
|
}, |
|
) |
|
non_affine_group_norm: bool = field( |
|
default=False, metadata={"help": "if set, group norm is not affine"} |
|
) |
|
offset: str = field( |
|
default="auto", |
|
metadata={ |
|
"help": "if set to 'auto', it is computed automatically from the receptive field, else set to int value" |
|
}, |
|
) |
|
activation: ACTIVATION_CHOICES = field( |
|
default="relu", |
|
metadata={ |
|
"help": "if set to 'auto', it is computed automatically from the receptive field, else set to int value" |
|
}, |
|
) |
|
vq_type: VQ_TYPE_CHOICES = field( |
|
default="none", metadata={"help": "which type of quantizer to use"} |
|
) |
|
vq_vars: int = field( |
|
default=320, |
|
metadata={"help": "project to this many vector quantized variables per group"}, |
|
) |
|
vq_groups: int = field( |
|
default=2, metadata={"help": "number of groups of latent variables"} |
|
) |
|
vq_dim: int = field( |
|
default=0, |
|
metadata={ |
|
"help": "uses this dimensionality for quantized vectors. 0 to use model dim // groups" |
|
}, |
|
) |
|
vq_depth: int = field( |
|
default=1, metadata={"help": "number of layers for vq weight projection"} |
|
) |
|
combine_groups: bool = field( |
|
default=False, metadata={"help": "if set, variables are shared among groups"} |
|
) |
|
vq_temp: Tuple[float, float, float] = field( |
|
default=(2.0, 0.5, 0.999995), |
|
metadata={ |
|
"help": "temperature for latent variable sampling with gumbel softmax. should be a tuple of 3 values (start, end, decay)" |
|
}, |
|
) |
|
vq_gamma: float = field( |
|
default=0.25, |
|
metadata={"help": "gamma parameter for kmeans style vector quantization"}, |
|
) |
|
infonce: bool = II("criterion.infonce") |
|
|
|
|
|
@register_model("wav2vec", dataclass=Wav2VecConfig) |
|
class Wav2VecModel(BaseFairseqModel): |
|
@classmethod |
|
def build_model(cls, cfg: Wav2VecConfig, task: FairseqTask): |
|
"""Build a new model instance.""" |
|
|
|
model = Wav2VecModel(cfg) |
|
logger.info(model) |
|
return model |
|
|
|
def __init__(self, cfg: Wav2VecConfig): |
|
super().__init__() |
|
|
|
self.prediction_steps = cfg.prediction_steps |
|
offset = cfg.offset |
|
|
|
if cfg.activation == "relu": |
|
activation = nn.ReLU() |
|
elif cfg.activation == "gelu": |
|
activation = nn.GELU() |
|
else: |
|
raise Exception("unknown activation " + cfg.activation) |
|
|
|
feature_enc_layers = eval(cfg.conv_feature_layers) |
|
self.feature_extractor = ConvFeatureExtractionModel( |
|
conv_layers=feature_enc_layers, |
|
dropout=0.0, |
|
log_compression=cfg.log_compression, |
|
skip_connections=cfg.skip_connections_feat, |
|
residual_scale=cfg.residual_scale, |
|
non_affine_group_norm=cfg.non_affine_group_norm, |
|
activation=activation, |
|
) |
|
embed = feature_enc_layers[-1][0] |
|
|
|
self.vector_quantizer = None |
|
if cfg.vq_type == "gumbel": |
|
self.vector_quantizer = GumbelVectorQuantizer( |
|
dim=embed, |
|
num_vars=cfg.vq_vars, |
|
temp=cfg.vq_temp, |
|
groups=cfg.vq_groups, |
|
combine_groups=cfg.combine_groups, |
|
vq_dim=cfg.vq_dim if cfg.vq_dim > 0 else embed, |
|
time_first=False, |
|
activation=activation, |
|
weight_proj_depth=cfg.vq_depth, |
|
weight_proj_factor=2, |
|
) |
|
elif cfg.vq_type == "kmeans": |
|
self.vector_quantizer = KmeansVectorQuantizer( |
|
dim=embed, |
|
num_vars=cfg.vq_vars, |
|
groups=cfg.vq_groups, |
|
combine_groups=cfg.combine_groups, |
|
vq_dim=cfg.vq_dim if cfg.vq_dim > 0 else embed, |
|
time_first=False, |
|
gamma=cfg.vq_gamma, |
|
) |
|
else: |
|
assert ( |
|
cfg.vq_type == "none" or cfg.vq_type is None |
|
), "Unknown quantizer type" |
|
|
|
if cfg.offset == "auto": |
|
jin = 0 |
|
rin = 0 |
|
for _, k, stride in feature_enc_layers: |
|
if rin == 0: |
|
rin = k |
|
rin = rin + (k - 1) * jin |
|
if jin == 0: |
|
jin = stride |
|
else: |
|
jin *= stride |
|
offset = math.ceil(rin / jin) |
|
|
|
offset = int(offset) |
|
|
|
def make_aggregator(): |
|
if cfg.aggregator == "cnn": |
|
agg_layers = eval(cfg.conv_aggregator_layers) |
|
agg_dim = agg_layers[-1][0] |
|
feature_aggregator = ConvAggegator( |
|
conv_layers=agg_layers, |
|
embed=embed, |
|
dropout=cfg.dropout, |
|
skip_connections=cfg.skip_connections_agg, |
|
residual_scale=cfg.residual_scale, |
|
non_affine_group_norm=cfg.non_affine_group_norm, |
|
conv_bias=not cfg.no_conv_bias, |
|
zero_pad=cfg.agg_zero_pad, |
|
activation=activation, |
|
) |
|
elif cfg.aggregator == "gru": |
|
agg_dim = cfg.gru_dim |
|
feature_aggregator = nn.Sequential( |
|
TransposeLast(), |
|
nn.GRU( |
|
input_size=embed, |
|
hidden_size=agg_dim, |
|
num_layers=1, |
|
dropout=cfg.dropout, |
|
), |
|
TransposeLast(deconstruct_idx=0), |
|
) |
|
else: |
|
raise Exception("unknown aggregator type " + cfg.aggregator) |
|
|
|
return feature_aggregator, agg_dim |
|
|
|
self.feature_aggregator, agg_dim = make_aggregator() |
|
|
|
self.wav2vec_predictions = Wav2VecPredictionsModel( |
|
in_dim=agg_dim, |
|
out_dim=embed, |
|
prediction_steps=cfg.prediction_steps, |
|
n_negatives=cfg.num_negatives, |
|
cross_sample_negatives=cfg.cross_sample_negatives, |
|
sample_distance=cfg.sample_distance, |
|
dropout=cfg.dropout, |
|
offset=offset, |
|
balanced_classes=cfg.balanced_classes, |
|
infonce=cfg.infonce, |
|
) |
|
|
|
self.dropout_feats = nn.Dropout(p=cfg.dropout_features) |
|
self.dropout_agg = nn.Dropout(p=cfg.dropout_agg) |
|
|
|
if cfg.project_features == "none": |
|
self.project_features = None |
|
elif cfg.project_features == "same": |
|
self.project_features = self.feature_aggregator |
|
elif cfg.project_features == "new": |
|
self.project_features, _ = make_aggregator() |
|
|
|
def forward(self, source): |
|
result = {} |
|
|
|
features = self.feature_extractor(source) |
|
if self.vector_quantizer: |
|
q_res = self.vector_quantizer(features) |
|
features = q_res["x"] |
|
for k in q_res.keys(): |
|
if k != "x": |
|
result[k] = q_res[k] |
|
|
|
x = self.dropout_feats(features) |
|
x = self.feature_aggregator(x) |
|
x = self.dropout_agg(x) |
|
|
|
if self.project_features is not None: |
|
features = self.project_features(features) |
|
x, targets = self.wav2vec_predictions(x, features) |
|
result["cpc_logits"] = x |
|
result["cpc_targets"] = targets |
|
|
|
return result |
|
|
|
def upgrade_state_dict_named(self, state_dict, name): |
|
super().upgrade_state_dict_named(state_dict, name) |
|
|
|
def max_positions(self): |
|
"""Maximum length supported by the model.""" |
|
return sys.maxsize |
|
|
|
def get_logits(self, net_output): |
|
logits = net_output["cpc_logits"] |
|
return logits |
|
|
|
def get_targets(self, sample, net_output): |
|
t = net_output["cpc_targets"] |
|
if isinstance(t, tuple): |
|
t = t[0] |
|
return t.contiguous() |
|
|
|
def get_target_weights(self, targets, net_output): |
|
targets = net_output["cpc_targets"] |
|
if isinstance(targets, tuple) and targets[-1] is not None: |
|
return targets[-1] |
|
return None |
|
|
|
def get_extra_losses(self, net_output): |
|
loss = None |
|
if "prob_perplexity" in net_output: |
|
loss = net_output["num_vars"] - net_output["prob_perplexity"] |
|
elif "kmeans_loss" in net_output: |
|
loss = net_output["kmeans_loss"] |
|
|
|
return loss |
|
|
|
|
|
def norm_block(is_layer_norm, dim, affine=True): |
|
if is_layer_norm: |
|
mod = nn.Sequential( |
|
TransposeLast(), |
|
Fp32LayerNorm(dim, elementwise_affine=affine), |
|
TransposeLast(), |
|
) |
|
else: |
|
mod = Fp32GroupNorm(1, dim, affine=affine) |
|
|
|
return mod |
|
|
|
|
|
class ConvFeatureExtractionModel(nn.Module): |
|
def __init__( |
|
self, |
|
conv_layers, |
|
dropout, |
|
log_compression, |
|
skip_connections, |
|
residual_scale, |
|
non_affine_group_norm, |
|
activation, |
|
): |
|
super().__init__() |
|
|
|
def block(n_in, n_out, k, stride): |
|
return nn.Sequential( |
|
nn.Conv1d(n_in, n_out, k, stride=stride, bias=False), |
|
nn.Dropout(p=dropout), |
|
norm_block( |
|
is_layer_norm=False, dim=n_out, affine=not non_affine_group_norm |
|
), |
|
activation, |
|
) |
|
|
|
in_d = 1 |
|
self.conv_layers = nn.ModuleList() |
|
for dim, k, stride in conv_layers: |
|
self.conv_layers.append(block(in_d, dim, k, stride)) |
|
in_d = dim |
|
|
|
self.log_compression = log_compression |
|
self.skip_connections = skip_connections |
|
self.residual_scale = math.sqrt(residual_scale) |
|
|
|
def forward(self, x): |
|
|
|
x = x.unsqueeze(1) |
|
|
|
for conv in self.conv_layers: |
|
residual = x |
|
x = conv(x) |
|
if self.skip_connections and x.size(1) == residual.size(1): |
|
tsz = x.size(2) |
|
r_tsz = residual.size(2) |
|
residual = residual[..., :: r_tsz // tsz][..., :tsz] |
|
x = (x + residual) * self.residual_scale |
|
|
|
if self.log_compression: |
|
x = x.abs() |
|
x = x + 1 |
|
x = x.log() |
|
|
|
return x |
|
|
|
|
|
class ZeroPad1d(nn.Module): |
|
def __init__(self, pad_left, pad_right): |
|
super().__init__() |
|
self.pad_left = pad_left |
|
self.pad_right = pad_right |
|
|
|
def forward(self, x): |
|
return F.pad(x, (self.pad_left, self.pad_right)) |
|
|
|
|
|
class ConvAggegator(nn.Module): |
|
def __init__( |
|
self, |
|
conv_layers, |
|
embed, |
|
dropout, |
|
skip_connections, |
|
residual_scale, |
|
non_affine_group_norm, |
|
conv_bias, |
|
zero_pad, |
|
activation, |
|
): |
|
super().__init__() |
|
|
|
def block(n_in, n_out, k, stride): |
|
|
|
ka = k // 2 |
|
kb = ka - 1 if k % 2 == 0 else ka |
|
|
|
pad = ( |
|
ZeroPad1d(ka + kb, 0) if zero_pad else nn.ReplicationPad1d((ka + kb, 0)) |
|
) |
|
|
|
return nn.Sequential( |
|
pad, |
|
nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias), |
|
nn.Dropout(p=dropout), |
|
norm_block(False, n_out, affine=not non_affine_group_norm), |
|
activation, |
|
) |
|
|
|
in_d = embed |
|
self.conv_layers = nn.ModuleList() |
|
self.residual_proj = nn.ModuleList() |
|
for dim, k, stride in conv_layers: |
|
if in_d != dim and skip_connections: |
|
self.residual_proj.append(nn.Conv1d(in_d, dim, 1, bias=False)) |
|
else: |
|
self.residual_proj.append(None) |
|
|
|
self.conv_layers.append(block(in_d, dim, k, stride)) |
|
in_d = dim |
|
self.conv_layers = nn.Sequential(*self.conv_layers) |
|
self.skip_connections = skip_connections |
|
self.residual_scale = math.sqrt(residual_scale) |
|
|
|
def forward(self, x): |
|
for rproj, conv in zip(self.residual_proj, self.conv_layers): |
|
residual = x |
|
x = conv(x) |
|
if self.skip_connections: |
|
if rproj is not None: |
|
residual = rproj(residual) |
|
x = (x + residual) * self.residual_scale |
|
return x |
|
|
|
|
|
class Wav2VecPredictionsModel(nn.Module): |
|
def __init__( |
|
self, |
|
in_dim, |
|
out_dim, |
|
prediction_steps, |
|
n_negatives, |
|
cross_sample_negatives, |
|
sample_distance, |
|
dropout, |
|
offset, |
|
balanced_classes, |
|
infonce, |
|
): |
|
super().__init__() |
|
|
|
self.n_negatives = n_negatives |
|
self.cross_sample_negatives = cross_sample_negatives |
|
self.sample_distance = sample_distance |
|
self.project_to_steps = nn.ConvTranspose2d( |
|
in_dim, out_dim, (1, prediction_steps) |
|
) |
|
self.dropout = nn.Dropout(p=dropout) |
|
self.offset = offset |
|
self.balanced_classes = balanced_classes |
|
self.infonce = infonce |
|
|
|
def sample_negatives(self, y): |
|
bsz, fsz, tsz = y.shape |
|
|
|
y = y.transpose(0, 1) |
|
y = y.contiguous().view(fsz, -1) |
|
|
|
cross_high = tsz * bsz |
|
high = tsz if self.sample_distance is None else min(tsz, self.sample_distance) |
|
assert high > 1 |
|
|
|
neg_idxs = torch.randint(low=0, high=high, size=(bsz, self.n_negatives * tsz)) |
|
|
|
with torch.no_grad(): |
|
if self.n_negatives > 0: |
|
tszs = ( |
|
buffered_arange(tsz) |
|
.unsqueeze(-1) |
|
.expand(-1, self.n_negatives) |
|
.flatten() |
|
) |
|
|
|
neg_idxs = torch.randint( |
|
low=0, high=high - 1, size=(bsz, self.n_negatives * tsz) |
|
) |
|
neg_idxs[neg_idxs >= tszs] += 1 |
|
|
|
if self.cross_sample_negatives > 0: |
|
tszs = ( |
|
buffered_arange(tsz) |
|
.unsqueeze(-1) |
|
.expand(-1, self.cross_sample_negatives) |
|
.flatten() |
|
) |
|
|
|
cross_neg_idxs = torch.randint( |
|
low=0, |
|
high=cross_high - 1, |
|
size=(bsz, self.cross_sample_negatives * tsz), |
|
) |
|
cross_neg_idxs[cross_neg_idxs >= tszs] += 1 |
|
|
|
if self.n_negatives > 0: |
|
for i in range(1, bsz): |
|
neg_idxs[i] += i * high |
|
else: |
|
neg_idxs = cross_neg_idxs |
|
|
|
if self.cross_sample_negatives > 0 and self.n_negatives > 0: |
|
neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1) |
|
|
|
negs = y[..., neg_idxs.view(-1)] |
|
negs = negs.view( |
|
fsz, bsz, self.n_negatives + self.cross_sample_negatives, tsz |
|
).permute( |
|
2, 1, 0, 3 |
|
) |
|
|
|
return negs |
|
|
|
def forward(self, x, y): |
|
|
|
x = x.unsqueeze(-1) |
|
x = self.project_to_steps(x) |
|
x = self.dropout(x) |
|
|
|
negatives = self.sample_negatives(y) |
|
y = y.unsqueeze(0) |
|
targets = torch.cat([y, negatives], dim=0) |
|
|
|
copies = targets.size(0) |
|
bsz, dim, tsz, steps = x.shape |
|
steps = min(steps, tsz - self.offset) |
|
|
|
predictions = x.new( |
|
bsz * copies * (tsz - self.offset + 1) * steps |
|
- ((steps + 1) * steps // 2) * copies * bsz |
|
) |
|
if self.infonce: |
|
labels = predictions.new_full( |
|
(predictions.shape[0] // copies,), 0, dtype=torch.long |
|
) |
|
else: |
|
labels = torch.zeros_like(predictions) |
|
weights = ( |
|
torch.full_like(labels, 1 / self.n_negatives) |
|
if self.balanced_classes and not self.infonce |
|
else None |
|
) |
|
|
|
start = end = 0 |
|
for i in range(steps): |
|
offset = i + self.offset |
|
end = start + (tsz - offset) * bsz * copies |
|
if self.infonce: |
|
predictions[start:end] = torch.einsum( |
|
"bct,nbct->tbn", x[..., :-offset, i], targets[..., offset:] |
|
).flatten() |
|
else: |
|
pos_num = (end - start) // copies |
|
predictions[start:end] = torch.einsum( |
|
"bct,nbct->nbt", x[..., :-offset, i], targets[..., offset:] |
|
).flatten() |
|
labels[start : start + pos_num] = 1.0 |
|
if weights is not None: |
|
weights[start : start + pos_num] = 1.0 |
|
start = end |
|
assert end == predictions.numel(), "{} != {}".format(end, predictions.numel()) |
|
|
|
if self.infonce: |
|
predictions = predictions.view(-1, copies) |
|
else: |
|
if weights is not None: |
|
labels = (labels, weights) |
|
|
|
return predictions, labels |
|
|