|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import numpy as np |
|
import torch |
|
from fairseq import utils |
|
from fairseq.data import ( |
|
AppendTokenDataset, |
|
Dictionary, |
|
IdDataset, |
|
LMContextWindowDataset, |
|
MonolingualDataset, |
|
NestedDictionaryDataset, |
|
NumelDataset, |
|
PadDataset, |
|
PrependTokenDataset, |
|
StripTokenDataset, |
|
TokenBlockDataset, |
|
TruncatedDictionary, |
|
data_utils, |
|
) |
|
from fairseq.data.indexed_dataset import get_available_dataset_impl |
|
from fairseq.data.shorten_dataset import maybe_shorten_dataset |
|
from fairseq.dataclass import ChoiceEnum, FairseqDataclass |
|
from fairseq.tasks import LegacyFairseqTask, register_task |
|
from omegaconf import II |
|
|
|
|
|
SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) |
|
SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class LanguageModelingConfig(FairseqDataclass): |
|
data: Optional[str] = field( |
|
default=None, metadata={"help": "path to data directory"} |
|
) |
|
sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( |
|
default="none", |
|
metadata={ |
|
"help": 'If omitted or "none", fills each sample with tokens-per-sample ' |
|
'tokens. If set to "complete", splits samples only at the end ' |
|
"of sentence, but may include multiple sentences per sample. " |
|
'"complete_doc" is similar but respects doc boundaries. ' |
|
'If set to "eos", includes only one sentence per sample.' |
|
}, |
|
) |
|
tokens_per_sample: int = field( |
|
default=1024, |
|
metadata={"help": "max number of tokens per sample for LM dataset"}, |
|
) |
|
output_dictionary_size: int = field( |
|
default=-1, metadata={"help": "limit the size of output dictionary"} |
|
) |
|
self_target: bool = field(default=False, metadata={"help": "include self target"}) |
|
future_target: bool = field( |
|
default=False, metadata={"help": "include future target"} |
|
) |
|
past_target: bool = field(default=False, metadata={"help": "include past target"}) |
|
add_bos_token: bool = field( |
|
default=False, metadata={"help": "prepend beginning of sentence token (<s>)"} |
|
) |
|
max_target_positions: Optional[int] = field( |
|
default=None, metadata={"help": "max number of tokens in the target sequence"} |
|
) |
|
shorten_method: SHORTEN_METHOD_CHOICES = field( |
|
default="none", |
|
metadata={ |
|
"help": "if not none, shorten sequences that exceed --tokens-per-sample" |
|
}, |
|
) |
|
shorten_data_split_list: str = field( |
|
default="", |
|
metadata={ |
|
"help": "comma-separated list of dataset splits to apply shortening to, " |
|
'e.g., "train,valid" (default: all dataset splits)' |
|
}, |
|
) |
|
pad_to_fixed_length: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "pad to fixed length"}, |
|
) |
|
pad_to_fixed_bsz: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "boolean to pad to fixed batch size"}, |
|
) |
|
|
|
|
|
seed: int = II("common.seed") |
|
batch_size: Optional[int] = II("dataset.batch_size") |
|
batch_size_valid: Optional[int] = II("dataset.batch_size_valid") |
|
dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( |
|
"dataset.dataset_impl" |
|
) |
|
data_buffer_size: int = II("dataset.data_buffer_size") |
|
tpu: bool = II("common.tpu") |
|
use_plasma_view: bool = II("common.use_plasma_view") |
|
plasma_path: str = II("common.plasma_path") |
|
|
|
|
|
@register_task("language_modeling", dataclass=LanguageModelingConfig) |
|
class LanguageModelingTask(LegacyFairseqTask): |
|
""" |
|
Train a language model. |
|
|
|
Args: |
|
dictionary (~fairseq.data.Dictionary): the dictionary for the input of |
|
the language model |
|
output_dictionary (~fairseq.data.Dictionary): the dictionary for the |
|
output of the language model. In most cases it will be the same as |
|
*dictionary*, but could possibly be a more limited version of the |
|
dictionary (if ``--output-dictionary-size`` is used). |
|
targets (List[str]): list of the target types that the language model |
|
should predict. Can be one of "self", "future", and "past". |
|
Defaults to "future". |
|
|
|
.. note:: |
|
|
|
The language modeling task is compatible with :mod:`fairseq-train`, |
|
:mod:`fairseq-generate`, :mod:`fairseq-interactive` and |
|
:mod:`fairseq-eval-lm`. |
|
|
|
The language modeling task provides the following additional command-line |
|
arguments: |
|
|
|
.. argparse:: |
|
:ref: fairseq.tasks.language_modeling_parser |
|
:prog: |
|
""" |
|
|
|
def __init__(self, args, dictionary, output_dictionary=None, targets=None): |
|
super().__init__(args) |
|
self.dictionary = dictionary |
|
self.output_dictionary = output_dictionary or dictionary |
|
|
|
if targets is None: |
|
targets = ["future"] |
|
self.targets = targets |
|
|
|
@classmethod |
|
def setup_dictionary(cls, args, **kwargs): |
|
dictionary = None |
|
output_dictionary = None |
|
if args.data: |
|
paths = utils.split_paths(args.data) |
|
assert len(paths) > 0 |
|
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) |
|
logger.info("dictionary: {} types".format(len(dictionary))) |
|
output_dictionary = dictionary |
|
if args.output_dictionary_size >= 0: |
|
output_dictionary = TruncatedDictionary( |
|
dictionary, args.output_dictionary_size |
|
) |
|
return (dictionary, output_dictionary) |
|
|
|
@classmethod |
|
def setup_task(cls, args, **kwargs): |
|
"""Setup the task (e.g., load dictionaries). |
|
|
|
Args: |
|
args (argparse.Namespace): parsed command-line arguments |
|
""" |
|
dictionary, output_dictionary = cls.setup_dictionary(args, **kwargs) |
|
|
|
|
|
if getattr(args, "exclude_self_target", False): |
|
args.self_target = False |
|
|
|
targets = [] |
|
if getattr(args, "self_target", False): |
|
targets.append("self") |
|
if getattr(args, "future_target", False): |
|
targets.append("future") |
|
if getattr(args, "past_target", False): |
|
targets.append("past") |
|
if len(targets) == 0: |
|
|
|
targets = ["future"] |
|
|
|
return cls(args, dictionary, output_dictionary, targets=targets) |
|
|
|
def build_model(self, args, from_checkpoint=False): |
|
model = super().build_model(args, from_checkpoint) |
|
for target in self.targets: |
|
if target not in model.supported_targets: |
|
raise ValueError( |
|
"Unsupported language modeling target: {}".format(target) |
|
) |
|
|
|
return model |
|
|
|
def load_dataset( |
|
self, split: str, epoch=1, combine=False, **kwargs |
|
) -> MonolingualDataset: |
|
"""Load a given dataset split. |
|
|
|
Args: |
|
split (str): name of the split (e.g., train, valid, valid1, test) |
|
""" |
|
paths = utils.split_paths(self.args.data) |
|
assert len(paths) > 0 |
|
|
|
data_path = paths[(epoch - 1) % len(paths)] |
|
split_path = os.path.join(data_path, split) |
|
|
|
|
|
dataset = data_utils.load_indexed_dataset( |
|
split_path, self.dictionary, self.args.dataset_impl, combine=combine |
|
) |
|
if dataset is None: |
|
raise FileNotFoundError(f"Dataset not found: {split} ({split_path})") |
|
|
|
dataset = maybe_shorten_dataset( |
|
dataset, |
|
split, |
|
self.args.shorten_data_split_list, |
|
self.args.shorten_method, |
|
self.args.tokens_per_sample, |
|
self.args.seed, |
|
) |
|
dataset = TokenBlockDataset( |
|
dataset, |
|
dataset.sizes, |
|
self.args.tokens_per_sample, |
|
pad=self.dictionary.pad(), |
|
eos=self.dictionary.eos(), |
|
break_mode=self.args.sample_break_mode, |
|
include_targets=True, |
|
use_plasma_view=self.args.use_plasma_view, |
|
split_path=split_path, |
|
plasma_path=self.args.plasma_path, |
|
) |
|
|
|
add_eos_for_other_targets = ( |
|
self.args.sample_break_mode is not None |
|
and self.args.sample_break_mode != "none" |
|
) |
|
fixed_pad_length = None |
|
if self.args.pad_to_fixed_length: |
|
fixed_pad_length = self.args.tokens_per_sample |
|
|
|
pad_to_bsz = None |
|
if self.args.pad_to_fixed_bsz: |
|
pad_to_bsz = ( |
|
self.args.batch_size_valid if "valid" in split else self.args.batch_size |
|
) |
|
|
|
self.datasets[split] = MonolingualDataset( |
|
dataset=dataset, |
|
sizes=dataset.sizes, |
|
src_vocab=self.dictionary, |
|
tgt_vocab=self.output_dictionary, |
|
add_eos_for_other_targets=add_eos_for_other_targets, |
|
shuffle=True, |
|
targets=self.targets, |
|
add_bos_token=self.args.add_bos_token, |
|
fixed_pad_length=fixed_pad_length, |
|
pad_to_bsz=pad_to_bsz, |
|
) |
|
|
|
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): |
|
""" |
|
Generate batches for inference. We prepend an eos token to src_tokens |
|
(or bos if `--add-bos-token` is set) and we append a <pad> to target. |
|
This is convenient both for generation with a prefix and LM scoring. |
|
""" |
|
dataset = StripTokenDataset( |
|
TokenBlockDataset( |
|
src_tokens, |
|
src_lengths, |
|
block_size=None, |
|
pad=self.source_dictionary.pad(), |
|
eos=self.source_dictionary.eos(), |
|
break_mode="eos", |
|
), |
|
|
|
self.source_dictionary.eos(), |
|
) |
|
src_dataset = PrependTokenDataset( |
|
dataset, |
|
token=( |
|
self.source_dictionary.bos() |
|
if getattr(self.args, "add_bos_token", False) |
|
else self.source_dictionary.eos() |
|
), |
|
) |
|
tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad()) |
|
return NestedDictionaryDataset( |
|
{ |
|
"id": IdDataset(), |
|
"net_input": { |
|
"src_tokens": PadDataset( |
|
src_dataset, |
|
pad_idx=self.source_dictionary.pad(), |
|
left_pad=False, |
|
), |
|
"src_lengths": NumelDataset(src_dataset, reduce=False), |
|
}, |
|
"target": PadDataset( |
|
tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False |
|
), |
|
}, |
|
sizes=[np.array(src_lengths)], |
|
) |
|
|
|
def inference_step( |
|
self, generator, models, sample, prefix_tokens=None, constraints=None |
|
): |
|
with torch.no_grad(): |
|
|
|
if getattr(self.args, "add_bos_token", False): |
|
bos_token = self.source_dictionary.bos() |
|
else: |
|
bos_token = self.source_dictionary.eos() |
|
|
|
if constraints is not None: |
|
raise NotImplementedError( |
|
"Constrained decoding with the language_modeling task is not supported" |
|
) |
|
|
|
|
|
|
|
if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement(): |
|
prefix_tokens = sample["net_input"]["src_tokens"] |
|
if prefix_tokens[:, 0].eq(bos_token).all(): |
|
prefix_tokens = prefix_tokens[:, 1:] |
|
|
|
return generator.generate( |
|
models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token |
|
) |
|
|
|
def eval_lm_dataloader( |
|
self, |
|
dataset, |
|
max_tokens: Optional[int] = 36000, |
|
batch_size: Optional[int] = None, |
|
max_positions: Optional[int] = None, |
|
num_shards: int = 1, |
|
shard_id: int = 0, |
|
num_workers: int = 1, |
|
data_buffer_size: int = 10, |
|
|
|
|
|
context_window: int = 0, |
|
): |
|
if context_window > 0: |
|
dataset = LMContextWindowDataset( |
|
dataset=dataset, |
|
tokens_per_sample=self.args.tokens_per_sample, |
|
context_window=context_window, |
|
pad_idx=self.source_dictionary.pad(), |
|
) |
|
return self.get_batch_iterator( |
|
dataset=dataset, |
|
max_tokens=max_tokens, |
|
max_sentences=batch_size, |
|
max_positions=max_positions, |
|
ignore_invalid_inputs=True, |
|
num_shards=num_shards, |
|
shard_id=shard_id, |
|
num_workers=num_workers, |
|
data_buffer_size=data_buffer_size, |
|
).next_epoch_itr(shuffle=False) |
|
|
|
@property |
|
def source_dictionary(self): |
|
"""Return the :class:`~fairseq.data.Dictionary` for the language |
|
model.""" |
|
return self.dictionary |
|
|
|
@property |
|
def target_dictionary(self): |
|
"""Return the :class:`~fairseq.data.Dictionary` for the language |
|
model.""" |
|
return self.output_dictionary |
|
|