GemmArte / article_base_train_fp16.py
someee
feat: Add optimized train script with fp16 precision
0601fa5 unverified
import os, time, math
import pandas as pd
from datasets import Dataset
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
import torch
from PIL import Image
from peft import get_peft_model, LoraConfig
import argparse
def load_custom_dataset_from_csv(csv_file, image_folder):
data = pd.read_csv(csv_file)
questions = data['question'].tolist()
images = [os.path.join(image_folder, img) for img in data['image'].tolist()]
answers = data['answer'].tolist()
return Dataset.from_dict({
'question': questions,
'image': images,
'answer': answers
})
def load_custom_dataset_from_parquet(parquet_file, image_folder):
data = pd.read_parquet(parquet_file)
questions = data['question'].tolist()
images = [os.path.join(image_folder, img) for img in data['image'].tolist()]
answers = data['answer'].tolist()
return Dataset.from_dict({
'question': questions,
'image': images,
'answer': answers
})
def load_dataset_by_type(metadata_type, dataset_dir, image_folder):
if metadata_type == "csv":
return load_custom_dataset_from_csv(
os.path.join(dataset_dir, 'train_samples.csv'),
image_folder
)
elif metadata_type == "parquet":
return load_custom_dataset_from_parquet(
os.path.join(dataset_dir, 'train.parquet'),
image_folder
)
else:
raise ValueError("Unsupported metadata type. Use 'csv' or 'parquet'.")
def load_model_and_args(use_qlora, model_id, device, output_dir):
if use_qlora:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16 # Changed from bfloat16 to float16
)
lora_config = LoraConfig(
r=8,
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
task_type="CAUSAL_LM"
)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map={"": 0})
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
args = TrainingArguments(
output_dir=os.path.join(output_dir, f"{math.floor(time.time())}"),
num_train_epochs=2,
remove_unused_columns=False,
per_device_train_batch_size=1,
gradient_accumulation_steps=4,
warmup_steps=2,
learning_rate=2e-5,
weight_decay=1e-6,
logging_steps=100,
optim="adamw_hf",
save_strategy="steps",
save_steps=1000,
save_total_limit=1,
fp16=True, # Changed from bf16 to fp16
report_to=["tensorboard"],
dataloader_pin_memory=False
)
return model, args
else:
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16).to(device) # Changed from bfloat16 to float16
for param in model.vision_tower.parameters():
param.requires_grad = False
for param in model.multi_modal_projector.parameters():
param.requires_grad = True
args = TrainingArguments(
output_dir=os.path.join(output_dir, f"{math.floor(time.time())}"),
num_train_epochs=2,
remove_unused_columns=False,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=2,
learning_rate=2e-5,
weight_decay=1e-6,
logging_steps=100,
optim="paged_adamw_8bit",
save_strategy="steps",
save_steps=1000,
save_total_limit=1,
fp16=True, # Changed from bf16 to fp16
report_to=["tensorboard"],
dataloader_pin_memory=False
)
return model, args
def main(args):
dataset_dir = args.dataset_dir
model_id = args.model_id
output_dir = args.output_dir
metadata_type = args.metadata_type
dataset = load_dataset_by_type(metadata_type, dataset_dir, os.path.join(dataset_dir, 'images'))
train_val_split = dataset.train_test_split(test_size=0.1)
train_ds = train_val_split['train']
val_ds = train_val_split['test']
processor = PaliGemmaProcessor.from_pretrained(model_id)
device = "cuda"
model, args = load_model_and_args(args.use_qlora, model_id, device, output_dir)
def collate_fn(examples):
texts = [example["question"] for example in examples]
labels = [example['answer'] for example in examples]
images = [Image.open(example['image']).convert("RGB") for example in examples]
tokens = processor(text=texts, images=images, suffix=labels, return_tensors="pt", padding="longest")
tokens = tokens.to(torch.float16).to(device) # Changed from bfloat16 to float16
return tokens
trainer = Trainer(
model=model,
train_dataset=train_ds,
eval_dataset=val_ds,
data_collator=collate_fn,
args=args
)
trainer.train()
def parse_args():
parser = argparse.ArgumentParser(description="Train a model with custom dataset")
parser.add_argument('--dataset_dir', type=str, default='./dataset', help='Path to the folder containing the images')
parser.add_argument('--model_id', type=str, default='google/paligemma-3b-pt-224', help='Model ID to use for training')
parser.add_argument('--output_dir', type=str, default='./output', help='Directory to save the output')
parser.add_argument('--use_qlora', type=bool, default=False, help='Use QLoRA for training')
parser.add_argument('--metadata_type', type=str, default='parquet', choices=['csv', 'parquet'], help='Metadata format (csv or parquet)')
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
main(args)