Spaces:
Runtime error
Runtime error
File size: 48,460 Bytes
2d6909b db77dd7 2d6909b 34b1950 593bb22 20dc449 ba91632 b72ef7f 439d01d e2a79fa b72ef7f 132b0ec 5534eb0 ba91632 e2a79fa ba91632 24a0ba5 ba91632 f716a54 ba91632 a6fbfb6 b51be98 a6fbfb6 ba91632 593bb22 744d9e3 24a0ba5 2600e48 eeb907d ba91632 593bb22 ba91632 132b0ec ba91632 132b0ec ba91632 593bb22 ba91632 a54c1ef 89644d7 eeb907d 7c04c25 eeb907d 7c04c25 eeb907d 593bb22 eeb907d 593bb22 eeb907d 593bb22 eeb907d 7c04c25 593bb22 eeb907d 7c04c25 eeb907d ba91632 eeb907d 7c04c25 eeb907d 7c04c25 eeb907d 7c04c25 eeb907d 7c04c25 eeb907d 7c04c25 eeb907d 7c04c25 ba91632 7c04c25 eeb907d ba91632 eeb907d ba91632 eeb907d ba91632 eeb907d ba91632 eeb907d 7c04c25 eeb907d ba91632 7c04c25 ba91632 eeb907d 7c04c25 eeb907d 3f69766 ba91632 8c8c07f ba91632 eeb907d 8c8c07f eeb907d ba91632 eeb907d 3f69766 8c8c07f 3f69766 ba91632 eeb907d 3f69766 ba91632 eeb907d ba91632 eeb907d 8c8c07f eeb907d 132b0ec e3277bc 89644d7 132b0ec 118507a 89644d7 118507a d994b45 89644d7 20dc449 cf245ed 20dc449 cf245ed 20dc449 24a0ba5 cf245ed 89644d7 43d4e83 34b1950 20dc449 34b1950 43d4e83 34b1950 43d4e83 34b1950 43d4e83 da88846 43d4e83 89644d7 43d4e83 34b1950 43d4e83 34b1950 6402181 89644d7 291ffbc ef88cd6 132b0ec 593bb22 89644d7 132b0ec 89644d7 132b0ec 89644d7 34b1950 89644d7 132b0ec 89644d7 132b0ec 89644d7 132b0ec 89644d7 132b0ec 89644d7 132b0ec 89644d7 7c7ccca 89644d7 7c7ccca 89644d7 132b0ec 34b1950 89644d7 132b0ec a32fa53 132b0ec 89644d7 5534eb0 593bb22 5534eb0 132b0ec 5534eb0 132b0ec 5534eb0 89644d7 5534eb0 132b0ec 89644d7 a32fa53 f6b1cb0 da88846 34b1950 5534eb0 da88846 5534eb0 132b0ec 89644d7 eeb907d 132b0ec 20dc449 24a0ba5 f6b1cb0 20dc449 e76dfe8 24a0ba5 e76dfe8 708f094 e76dfe8 20dc449 f6b1cb0 20dc449 e76dfe8 24a0ba5 e76dfe8 20dc449 e76dfe8 20dc449 34b1950 20dc449 e76dfe8 20dc449 89644d7 7454788 f14cff1 7454788 708f094 f6b1cb0 708f094 34b1950 132b0ec 118507a 7454788 708f094 f6b1cb0 7454788 89644d7 20dc449 f14cff1 20dc449 708f094 20dc449 708f094 bf91121 708f094 7454788 744d9e3 20dc449 f14cff1 20dc449 708f094 cf245ed 20dc449 cf245ed 20dc449 cf245ed 7454788 20dc449 cf245ed 7454788 cf245ed 34b1950 e76dfe8 bf91121 593bb22 bf91121 593bb22 bf91121 e76dfe8 bf91121 744d9e3 34b1950 eeb907d 86218e7 89644d7 b96ba8b eeb907d 439d01d b96ba8b 439d01d 46f0706 cf245ed 24a0ba5 cf245ed 20dc449 cf245ed b96ba8b 20dc449 43d4e83 c1769c1 eeb907d 24a0ba5 20dc449 46f0706 c1769c1 eeb907d 439d01d eeb907d d994b45 89644d7 20dc449 cf245ed cc2969a 89644d7 d09cdf3 c412123 cfad98b c412123 cfad98b c412123 eeb907d fa3e7dd b51be98 fa3e7dd b51be98 20dc449 f14cff1 cf245ed 708f094 cf245ed f14cff1 fa3e7dd 70d74f0 f14cff1 aaa4e80 03fd59b b96ba8b 744d9e3 bf91121 7454788 20dc449 10aedaa f14cff1 744d9e3 34b1950 593bb22 fa3e7dd b51be98 fa3e7dd 34b1950 fa3e7dd 744d9e3 593bb22 e76dfe8 f14cff1 593bb22 708f094 cf245ed 708f094 bf91121 03fd59b 7454788 744d9e3 20dc449 c1769c1 34b1950 eeb907d c1769c1 439d01d eeb907d c412123 cfad98b c412123 eeb907d 20dc449 89644d7 ba91632 708f094 ba91632 cf245ed ba91632 cf245ed ba91632 20dc449 fa3e7dd ba91632 20dc449 ba91632 cf245ed ba91632 744d9e3 ba91632 20dc449 ba91632 744d9e3 ba91632 744d9e3 ba91632 03fd59b ba91632 43d4e83 ba91632 439d01d ba91632 439d01d cf245ed ba91632 eeb907d ba91632 d09cdf3 ba91632 fa3e7dd ba91632 e3277bc ba91632 fa3e7dd ba91632 744d9e3 ba91632 d994b45 ba91632 fa3e7dd ba91632 d994b45 ba91632 d994b45 ba91632 2a53cb7 ba91632 d994b45 cf245ed afad1bb ba91632 2600e48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
"""
nohup python3 app.py &
export GOOGLE_APPLICATION_CREDENTIALS="gcp_creds.json"
"""
import gc
import re
import uuid
import json
from typing import Dict
from collections import defaultdict
from datetime import date, datetime
import nltk
import torch
import numpy as np
import gradio as gr
import language_tool_python
from scipy.special import softmax
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from google.cloud import storage
if gr.NO_RELOAD:
from humanize import humanize_text, device
# humanize_text = None
# device = None
from utils import remove_special_characters, split_text_allow_complete_sentences_nltk
from google_search import google_search, months, domain_list, build_date
from ai_generate import generate, citations_to_html, remove_citations, display_cited_text, llm_wrapper
from youtube import transcribe
# nltk.download("punkt_tab")
print(f"Using device: {device}")
print("Loading AI detection models...")
models = {
"Polygraf AI (Base Model)": AutoModelForSequenceClassification.from_pretrained(
"polygraf-ai/bc-roberta-openai-2sent"
).to(device),
"Polygraf AI (Advanced Model)": AutoModelForSequenceClassification.from_pretrained(
"polygraf-ai/bc_combined_3sent"
).to(device),
}
tokenizers = {
"Polygraf AI (Base Model)": AutoTokenizer.from_pretrained("polygraf-ai/bc-roberta-openai-2sent"),
"Polygraf AI (Advanced Model)": AutoTokenizer.from_pretrained("polygraf-ai/bc_combined_3sent"),
}
# grammar correction tool
tool = language_tool_python.LanguageTool("en-US")
# source detection model
MC_TOKEN_SIZE = 256
TEXT_MC_MODEL_PATH = "polygraf-ai/mc-model"
MC_LABEL_MAP = ["OpenAI GPT", "Mistral", "CLAUDE", "Gemini", "Grammar Enhancer"]
text_mc_tokenizer = AutoTokenizer.from_pretrained(TEXT_MC_MODEL_PATH)
print("Loading Source detection model...")
text_mc_model = AutoModelForSequenceClassification.from_pretrained(TEXT_MC_MODEL_PATH).to(device)
def generate_cited_html(cited_text, citations: dict):
cited_text = cited_text.replace("\n", "<br>")
html_code = """
<style>
.reference-container {
position: relative;
display: inline-block;
}
.reference-btn {
display: inline-block;
width: 20px; /* Reduced width */
height: 20px; /* Reduced height */
border-radius: 50%;
background-color: #e33a89; /* Pink color for the button */
color: white;
text-align: center;
line-height: 20px; /* Adjusted line-height */
cursor: pointer;
font-weight: bold;
margin-right: 5px;
transition: background-color 0.3s ease, transform 0.3s ease;
}
.reference-btn:hover {
background-color: #ff69b4; /* Lighter pink on hover */
transform: scale(1.1); /* Slightly enlarge on hover */
}
.reference-popup {
display: none;
position: absolute;
z-index: 1;
top: 100%;
background-color: #f9f9f9;
border: 1px solid #ddd;
padding: 15px;
border-radius: 4px;
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
width: calc(min(90vw, 400px));
max-height: calc(min(80vh, 300px));
overflow-y: auto;
}
.reference-popup .close-btn {
float: right;
cursor: pointer;
font-weight: bold;
color: white;
font-size: 16px;
padding: 0;
width: 20px;
height: 20px;
text-align: center;
line-height: 20px;
background-color: #ff4c4c;
border-radius: 2px;
transition: transform 0.3s ease, background-color 0.3s ease;
}
.reference-popup .close-btn:hover {
transform: scale(1.2);
background-color: #ff3333;
}
input[type="radio"] {
position: absolute;
opacity: 0;
pointer-events: none;
}
input[type="radio"]:checked + .reference-popup {
display: block;
}
/* Additional styling for distinct sections */
.reference-popup strong {
font-weight: bold;
color: #333;
display: block;
margin-bottom: 5px;
}
.reference-popup p {
margin: 0 0 10px 0;
padding: 0;
}
.reference-popup .source {
margin-bottom: 10px;
font-size: 14px;
font-weight: bold;
color: #1e90ff;
}
.reference-popup .content {
margin-bottom: 10px;
font-size: 13px;
color: #555;
}
@media (prefers-color-scheme: dark) {
.reference-btn {
background-color: #1e90ff;
}
.reference-popup {
background-color: #2c2c2c;
border-color: #444;
color: #f1f1f1;
}
.reference-popup .close-btn {
background-color: #ff4c4c;
}
.reference-popup .close-btn:hover {
background-color: #ff3333;
}
.reference-popup strong {
color: #ddd;
}
.reference-popup .source {
color: #1e90ff;
}
.reference-popup .content {
color: #bbb;
}
}
</style>
<script>
document.addEventListener('click', (event) => {
const containers = document.querySelectorAll('.reference-container');
containers.forEach(container => {
const rect = container.getBoundingClientRect();
const popup = container.querySelector('.reference-popup');
// Reset alignment
popup.style.left = '';
popup.style.right = '';
const popupWidth = popup.offsetWidth;
const viewportWidth = window.innerWidth;
// If the popup would go off the right edge
if (rect.right + popupWidth > viewportWidth) {
popup.style.right = '0'; // Align popup to the right
}
// If the popup would go off the left edge
else if (rect.left - popupWidth < 0) {
popup.style.left = '0'; // Align popup to the left
}
// Otherwise center it
else {
popup.style.left = '50%';
popup.style.transform = 'translateX(-50%)'; // Center the popup
}
});
});
function closeReferencePanes() {
document.querySelectorAll('input[name="reference"]').forEach((input) => {
input.checked = false;
});
}
</script>
<div style="height: 600px; overflow-y: auto; overflow-x: auto;">
"""
# Function to replace each citation with a reference button
citation_numbers = {}
next_number = 1
citation_count = 0 # To track unique instances of each citation
references = "<b>References:</b><br><br>"
def replace_citations(match):
nonlocal citation_count, next_number, references
citation_id = match.group(1) # Extract citation number from the match
ref_data = citations.get(int(citation_id))
# If reference data is not found, return the original text
if not ref_data:
return match.group(0)
# Getting PDF file from gradio path
if "/var/tmp/gradio/" in ref_data["source"]:
ref_data["source"] = ref_data["source"].split("/")[-1]
# remove new line artifacts from scraping / parsing
ref_data["content"] = ref_data["content"].replace("\n", " ")
# Check if source is a URL, make it clickable if so
if ref_data["source"].startswith("http"):
source_html = f'<a href="{ref_data["source"]}" target="_blank" class="source">{ref_data["source"]}</a>'
else:
source_html = f'<span class="source">{ref_data["source"]}</span>'
if citation_id not in citation_numbers:
citation_numbers[citation_id] = next_number
source = ref_data["source"]
content = ref_data["content"]
references += f"[{next_number}] {source}<br>- {content}<br><br>"
next_number += 1
citation_number = citation_numbers[citation_id]
# Unique id for each reference button and popup
unique_id = f"{citation_id}-{citation_count}"
citation_count += 1
# HTML code for the reference button and popup with formatted content
button_html = f"""
<span class="reference-container">
<label for="ref-toggle-{unique_id}" class="reference-btn" onclick="closeReferencePanes(); document.getElementById('ref-toggle-{unique_id}').checked = true;">{citation_number}</label>
<input type="radio" id="ref-toggle-{unique_id}" name="reference" />
<span class="reference-popup">
<span class="close-btn" onclick="document.getElementById('ref-toggle-{unique_id}').checked = false;">×</span>
<strong>Source:</strong> {source_html}
<strong>Content:</strong> <p class="content">{ref_data["content"]}</p>
</span>
</span>
"""
return button_html
# Replace inline citations in the text with the generated HTML
html_code += re.sub(r"<(\d+)>", replace_citations, cited_text)
html_code += "<br><br>" + references
html_code += "</div>"
return html_code
# Function to move model to the appropriate device
def to_device(model):
return model.to(device)
def copy_to_input(text):
return text
def remove_bracketed_numbers(text):
pattern = r"^\[\d+\]"
cleaned_text = re.sub(pattern, "", text)
return cleaned_text
def clean_text(text: str) -> str:
paragraphs = text.split("\n\n")
cleaned_paragraphs = []
for paragraph in paragraphs:
cleaned = re.sub(r"\s+", " ", paragraph).strip()
cleaned = re.sub(r"(?<=\.) ([a-z])", lambda x: x.group(1).upper(), cleaned)
cleaned_paragraphs.append(cleaned)
cleaned_paragraphs = [item for item in cleaned_paragraphs if item.strip()]
return "\n\n".join(cleaned_paragraphs)
def format_references(text: str) -> str:
body, references = split_text_from_refs(text)
return body + references
def split_text_from_refs(text: str, sep="\n"):
lines = text.split("\n")
references = []
article_text = []
index_pattern = re.compile(r"\[(\d+)\]")
in_references = False
for line in lines:
if line == "":
continue
match = re.search(r"[Rr]eferences:", line, re.DOTALL)
if line.strip().lower() == "references" or line.strip().lower() == "references:":
in_references = True
continue
if line.strip().lower().startswith("references:"):
in_references = True
if match:
in_references = True
line = line[match.end() :]
if in_references:
matches = index_pattern.split(line)
for match in matches:
if match.strip() and not match.isdigit() and not match.strip().lower().startswith("references:"):
references.append(match.strip())
else:
article_text.append(line.strip())
if len(references) > 0:
formatted_refs = []
for i, ref in enumerate(references, 1):
ref = remove_bracketed_numbers(ref)
formatted_refs.append(f"[{i}] {ref}{sep}")
formatted_refs = f"{sep}{sep}References:{sep}{sep}" + f"{sep}".join(formatted_refs)
else:
formatted_refs = ""
body = f"{sep}{sep}".join(article_text)
return body, formatted_refs
def ends_with_references(text):
# Define a regular expression pattern for variations of "References:"
pattern = re.compile(r"\b[Rr]eferences:\s*$", re.IGNORECASE | re.MULTILINE)
# Check if the text ends with any form of "References:"
return bool(pattern.search(text.strip()))
def format_and_correct_language_check(text: str) -> str:
return tool.correct(text)
def predict(model, tokenizer, text):
text = remove_special_characters(text)
bc_token_size = 256
with torch.no_grad():
model.eval()
tokens = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=bc_token_size,
return_tensors="pt",
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
output_norm = {"HUMAN": output_norm[0], "AI": output_norm[1]}
torch.cuda.empty_cache()
gc.collect()
return output_norm
def ai_generated_test(text, model="BC Original"):
return predict(models[model], tokenizers[model], text)
def detection_polygraf(text, model="BC Original"):
# sentences = split_into_sentences(text)
sentences = nltk.sent_tokenize(text)
num_sentences = len(sentences)
scores = defaultdict(list)
overall_scores = []
# Process each chunk of 3 sentences and store the score for each sentence in the chunk
for i in range(num_sentences):
chunk = " ".join(sentences[i : i + 3])
if chunk:
# result = classifier(chunk)
result = ai_generated_test(chunk, model)
score = result["AI"]
for j in range(i, min(i + 3, num_sentences)):
scores[j].append(score)
# Calculate the average score for each sentence and apply color coding
paragraphs = text.split("\n")
paragraphs = [s for s in paragraphs if s.strip()]
colored_paragraphs = []
i = 0
for paragraph in paragraphs:
temp_sentences = nltk.sent_tokenize(paragraph)
colored_sentences = []
for sentence in temp_sentences:
if scores[i]:
avg_score = sum(scores[i]) / len(scores[i])
if avg_score >= 0.70:
colored_sentence = f"<span style='background-color:red;'>{sentence}</span>"
elif avg_score >= 0.55:
colored_sentence = f"<span style='background-color:GoldenRod;'>{sentence}</span>"
else:
colored_sentence = sentence
colored_sentences.append(colored_sentence)
overall_scores.append(avg_score)
i = i + 1
combined_sentences = " ".join(colored_sentences)
colored_paragraphs.append(combined_sentences)
overall_score = sum(overall_scores) / len(overall_scores)
overall_score = {"HUMAN": 1 - overall_score, "AI": overall_score}
return overall_score, "<br><br>".join(colored_paragraphs)
ai_check_options = [
"Polygraf AI (Base Model)",
"Polygraf AI (Advanced Model)",
]
def predict_mc(text):
with torch.no_grad():
text_mc_model.eval()
tokens = text_mc_tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=MC_TOKEN_SIZE,
).to(device)
output = text_mc_model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
torch.cuda.empty_cache()
gc.collect()
return output_norm
def predict_mc_scores(input, bc_score):
mc_scores = []
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc", tokenizer=text_mc_tokenizer)
samples_len_mc = len(split_text_allow_complete_sentences_nltk(input, type_det="mc", tokenizer=text_mc_tokenizer))
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_mc(cleaned_text_mc)
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
mc_score_list = average_mc_scores.tolist()
mc_score = {}
for score, label in zip(mc_score_list, MC_LABEL_MAP):
mc_score[label.upper()] = score
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
print("MC Score:", mc_score)
if sum_prob < 0.01:
mc_score = {}
return mc_score
def highlighter_polygraf(text, model="Polygraf AI (Base Model)"):
text = remove_citations(text)
body, references = split_text_from_refs(text)
score, text = detection_polygraf(text=body, model=model)
mc_score = predict_mc_scores(body, score) # mc score
text = text + references.replace("\n", "<br>")
return score, text, mc_score
def ai_check(history: list, option: str):
text = history[-1][1]
if option.startswith("Polygraf AI"):
return highlighter_polygraf(text, option)
else:
return highlighter_polygraf(text, option)
def generate_prompt(settings: Dict[str, str]) -> str:
settings["keywords"] = [item for item in settings["keywords"] if item.strip()]
# - Add a "References" section in the format "References:" on a new line after the requested text, formatted as [1], [2], etc. with each source on their own line
prompt = f"""
Write a {settings['article_length']} words (around) {settings['format']} on {settings['topic']}.\n
"""
if settings["context"]:
prompt += f"""
Context:
- {settings['context']}
"""
prompt += f"""
Style and Tone:
- Writing style: {settings['writing_style']}
- Tone: {settings['tone']}
- Target audience: {settings['user_category']}
Content:
- Depth: {settings['depth_of_content']}
- Structure: {', '.join(settings['structure'])}
"""
if len(settings["keywords"]) > 0:
prompt += f"""
Keywords to incorporate:
{', '.join(settings['keywords'])}
"""
prompt += f"""
Additional requirements:
- Don't start with "Here is a...", start with the requested text directly
- End with a {settings['conclusion_type']} conclusion
- Do not make any headline, title bold.
- Ensure proper paragraph breaks for better readability.
- Avoid any references to artificial intelligence, language models, or the fact that this is generated by an AI, and do not mention something like here is the article etc.
- Adhere to any format structure provided to the system if any.
"""
return prompt
def regenerate_prompt(settings: Dict[str, str]) -> str:
prompt = f"""
I am a {settings['role']}
"{settings['generated_article']}"
Edit the given text based on user comments.
User Comments:
- {settings['user_comments']}
Requirements:
- Don't start with "Here is a...", start with the requested text directly
- The original content should not be changed. Make minor modifications based on user comments above.
- Keep the references the same as the given text in the same format.
- Do not make any headline, title bold.
Context:
- {settings['context']}
Ensure proper paragraph breaks for better readability.
Avoid any references to artificial intelligence, language models, or the fact that this is generated by an AI, and do not mention something like here is the article etc.
"""
return prompt
def generate_article(
input_role: str,
topic: str,
context: str,
keywords: str,
article_length: str,
format: str,
writing_style: str,
tone: str,
user_category: str,
depth_of_content: str,
structure: str,
references: str,
num_examples: str,
conclusion_type: str,
ai_model: str,
url_content: str = None,
api_key: str = None,
pdf_file_input: list[str] = None,
generated_article: str = None,
user_comments: str = None,
yt_content: str = None,
) -> str:
settings = {
"role": input_role,
"topic": topic,
"context": context,
"keywords": [k.strip() for k in keywords.split(",")],
"article_length": article_length,
"format": format,
"writing_style": writing_style,
"tone": tone,
"user_category": user_category,
"depth_of_content": depth_of_content,
"structure": [s.strip() for s in structure.split(",")],
"references": [r.strip() for r in references.split(",")],
"num_examples": num_examples,
"conclusion_type": conclusion_type,
"generated_article": generated_article,
"user_comments": user_comments,
}
if generated_article:
prompt = regenerate_prompt(settings)
else:
prompt = generate_prompt(settings)
print("Generated Prompt...\n", prompt)
article, citations = generate(
prompt=prompt,
input_role=input_role,
topic=topic,
context=context,
model=ai_model,
url_content=url_content,
path=pdf_file_input,
# path=["./final_report.pdf"], # TODO: reset
temperature=1,
max_length=2048,
api_key=api_key,
sys_message="",
yt_content=yt_content,
)
return article, citations
def get_history(history):
# return history
history_formatted = []
for entry in history:
history_formatted.append((entry[0], entry[1]))
return history_formatted
def clear_history():
# Return empty list for history state and display
return [], []
def humanize(
model: str,
cited_text: str,
temperature: float = 1.2,
repetition_penalty: float = 1,
top_k: int = 50,
length_penalty: float = 1,
history=None,
) -> str:
print("Humanizing text...")
# body, references = split_text_from_refs(text)
cited_text = history[-1][1]
citations = history[-1][2]
article = humanize_text(
text=cited_text,
model_name=model,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
length_penalty=length_penalty,
)
# result = result + references
# corrected_text = format_and_correct_language_check(result)
article = clean_text(article)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
history.append((f"Humanized Text | {timestamp}\nInput: {model}", article, citations))
latest_humanizer_data = {
"original text": cited_text,
"humanized text": article,
"citations": citations, # can remove saving citations
"metadata": {
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"top_k": top_k,
"length_penalty": length_penalty,
},
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
return generate_cited_html(article, citations), history, latest_humanizer_data
def update_visibility_api(model: str):
if model in ["OpenAI GPT 3.5", "OpenAI GPT 4"]:
return gr.update(visible=True)
else:
return gr.update(visible=False)
# Function to update the default selected structure based on the selected format
def update_structure(format_choice):
# List of formats that should use "Plain Text"
plain_text_formats = [
"TikTok Video Content",
"Instagram Video Content",
"LinkedIn post",
"X (Twitter) post",
"Facebook post",
"Email",
]
# Set the appropriate default structure based on the selected format
if format_choice in plain_text_formats:
return gr.update(value="Plain Text", interactive=True)
else:
return gr.update(value="Introduction, Body, Conclusion", interactive=True)
# Initialize Google Cloud Storage client
client = storage.Client()
bucket_name = "ai-source-detection"
bucket = client.bucket(bucket_name)
def save_to_cloud_storage(
article,
topic,
input_role,
context,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
ai_model,
url_content,
generated_article,
user_comments,
timestamp,
):
"""Save generated article and metadata to Google Cloud Storage within a specific folder."""
# Create a unique filename
file_id = str(uuid.uuid4())
# Define the file path and name in the bucket
folder_path = "ai-writer/"
file_name = f"{folder_path}{timestamp.replace(' ', '_').replace(':', '-')}_{file_id}.json"
# Create a dictionary with the article and all relevant metadata
data = {
"article": article,
"metadata": {
"topic": topic,
"input_role": input_role,
"context": context,
"keywords": keywords,
"article_length": article_length,
"format": format,
"writing_style": writing_style,
"tone": tone,
"user_category": user_category,
"depth_of_content": depth_of_content,
"structure": structure,
"references": references,
"num_examples": num_examples,
"conclusion_type": conclusion_type,
"ai_model": ai_model,
"url_content": url_content,
"generated_article": generated_article,
"user_comments": user_comments,
"timestamp": timestamp,
},
}
# Convert data to JSON string
json_data = json.dumps(data)
# Create a blob and upload to GCS
blob = bucket.blob(file_name)
blob.upload_from_string(json_data, content_type="application/json")
return f"Data saved as {file_name} in GCS."
def save_humanizer_feedback_to_cloud_storage(data, humanizer_feedback):
"""Save generated article and metadata to Google Cloud Storage within a specific folder."""
if data:
try:
data["user_feedback"] = humanizer_feedback
# Create a unique filename
file_id = str(uuid.uuid4())
# Define the file path and name in the bucket
folder_path = "ai-writer/humanizer-feedback/"
file_name = f"{folder_path}{data['timestamp'].replace(' ', '_').replace(':', '-')}_{file_id}.json"
# Convert data to JSON string
json_data = json.dumps(data)
# Create a blob and upload to GCS
blob = bucket.blob(file_name)
blob.upload_from_string(json_data, content_type="application/json")
gr.Info("Successfully reported. Thank you for the feedback!")
except Exception:
gr.Warning("Report not saved.")
else:
gr.Warning("Nothing humanized to save yet!")
scholar_urls = [
"arxiv.org",
"aclanthology.org",
"ieeexplore.ieee.org",
"researchgate.net",
# "scholar.google.com",
"springer.com",
# "sciencedirect.com", # 400
# "onlinelibrary.wiley.com", # 400
"jstor.org", # 400
"semanticscholar.org",
"biorxiv.org",
"medrxiv.org",
"ssrn.com",
"pubmed.ncbi.nlm.nih.gov",
"cochranelibrary.com",
]
def generate_and_format(
input_role,
topic,
context,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
google_search_check,
scholar_mode_check,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_include,
include_sites,
exclude_sites,
pdf_file_input,
history=None,
yt_url: str = None,
ai_model="OpenAI GPT 4o",
api_key=None,
generated_article: str = None,
user_comments: str = None,
):
url_content = None
if google_search_check:
gr.Info("Searching internet for relevant content...")
date_from = build_date(year_from, month_from, day_from)
date_to = build_date(year_to, month_to, day_to)
sorted_date = f"date:r:{date_from}:{date_to}"
final_query = llm_wrapper(
input_role, topic, context, model="OpenAI GPT 4o", task_type="internet", temperature=0.7
)
if scholar_mode_check:
# scholar_site_queries = [f"site:{site.strip()}" for site in scholar_urls]
# final_query += " " + " OR ".join(scholar_site_queries)
pass
else:
if include_sites:
site_queries = [f"site:{site.strip()}" for site in include_sites.split(",")]
final_query += " " + " OR ".join(site_queries)
if exclude_sites:
exclude_queries = [f"-site:{site.strip()}" for site in exclude_sites.split(",")]
final_query += " " + " ".join(exclude_queries)
print(f"Google Search Query: {final_query}")
url_content = google_search(final_query, sorted_date, domains_to_include, scholar_mode_check)
yt_content = {}
if yt_url:
gr.Info("Transcribing YouTube video...")
transcribed_text = transcribe(yt_url)
gr.Info("Transcription completed. Generating article...")
yt_content[yt_url] = transcribed_text
# topic_context = topic + ", " + context
article, citations = generate_article(
input_role,
topic,
context,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
ai_model,
url_content,
api_key,
pdf_file_input,
generated_article,
user_comments,
yt_content,
)
# if ends_with_references(article) and url_content is not None:
# for url in url_content.keys():
# article += f"\n{url}"
article = clean_text(display_cited_text(article))
# reference_formatted = format_references(article)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
history.append((f"Generated Text | {timestamp}\nInput: {topic}", article, citations))
# Save the article and metadata to Cloud Storage
# We dont save if there is PDF input for privacy reasons
if pdf_file_input is None:
save_message = save_to_cloud_storage(
article,
topic,
input_role,
context,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
ai_model,
url_content,
generated_article,
user_comments,
timestamp,
)
print(save_message)
return generate_cited_html(article, citations), history
# def create_interface():
with gr.Blocks(
theme=gr.themes.Default(
primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.yellow, neutral_hue=gr.themes.colors.gray
),
css="""
.input-highlight-pink block_label {background-color: #008080}
""",
) as demo:
history = gr.State([])
latest_humanizer_data = gr.State()
today = date.today()
# dd/mm/YY
d1 = today.strftime("%d/%B/%Y")
d1 = d1.split("/")
gr.Markdown("# Polygraf AI Content Writer", elem_classes="text-center text-3xl mb-6")
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("## Article Configuration", elem_classes="text-xl mb-4")
input_role = gr.Textbox(label="I am a", placeholder="Enter your role", value="Student")
input_topic = gr.Textbox(
label="Topic",
placeholder="Enter the main topic of your article",
elem_classes="input-highlight-pink",
)
input_context = gr.Textbox(
label="Context",
placeholder="Provide some context for your topic",
elem_classes="input-highlight-pink",
)
input_keywords = gr.Textbox(
label="Keywords",
placeholder="Enter comma-separated keywords",
elem_classes="input-highlight-yellow",
)
with gr.Row():
input_format = gr.Dropdown(
choices=[
"Article",
"Essay",
"Blog post",
"Report",
"Research paper",
"News article",
"White paper",
"Email",
"LinkedIn post",
"X (Twitter) post",
"Instagram Video Content",
"TikTok Video Content",
"Facebook post",
],
value="Article",
label="Format",
elem_classes="input-highlight-turquoise",
)
input_length = gr.Slider(
minimum=50,
maximum=5000,
step=50,
value=300,
label="Article Length",
elem_classes="input-highlight-pink",
)
with gr.Row():
input_writing_style = gr.Dropdown(
choices=[
"Formal",
"Informal",
"Technical",
"Conversational",
"Journalistic",
"Academic",
"Creative",
],
value="Formal",
label="Writing Style",
elem_classes="input-highlight-yellow",
)
input_tone = gr.Dropdown(
choices=["Friendly", "Professional", "Neutral", "Enthusiastic", "Skeptical", "Humorous"],
value="Professional",
label="Tone",
elem_classes="input-highlight-turquoise",
)
input_user_category = gr.Dropdown(
choices=[
"Students",
"Professionals",
"Researchers",
"General Public",
"Policymakers",
"Entrepreneurs",
],
value="General Public",
label="Target Audience",
elem_classes="input-highlight-pink",
)
input_depth = gr.Dropdown(
choices=[
"Surface-level overview",
"Moderate analysis",
"In-depth research",
"Comprehensive study",
],
value="Moderate analysis",
label="Depth of Content",
elem_classes="input-highlight-yellow",
)
input_structure = gr.Dropdown(
choices=[
"Introduction, Body, Conclusion",
"Abstract, Introduction, Methods, Results, Discussion, Conclusion",
"Executive Summary, Problem Statement, Analysis, Recommendations, Conclusion",
"Introduction, Literature Review, Methodology, Findings, Analysis, Conclusion",
"Plain Text",
],
value="Introduction, Body, Conclusion",
label="Structure",
elem_classes="input-highlight-turquoise",
interactive=True,
)
input_references = gr.Dropdown(
choices=[
"Academic journals",
"Industry reports",
"Government publications",
"News outlets",
"Expert interviews",
"Case studies",
],
value="News outlets",
label="References",
elem_classes="input-highlight-pink",
)
input_num_examples = gr.Dropdown(
choices=["1-2", "3-4", "5+"],
value="1-2",
label="Number of Examples/Case Studies",
elem_classes="input-highlight-yellow",
)
input_conclusion = gr.Dropdown(
choices=["Summary", "Call to Action", "Future Outlook", "Thought-provoking Question"],
value="Call to Action",
label="Conclusion Type",
elem_classes="input-highlight-turquoise",
)
gr.Markdown("# Search Options", elem_classes="text-center text-3xl mb-6")
google_default = False
with gr.Row():
google_search_check = gr.Checkbox(
label="Enable Internet Search For Recent Sources", value=google_default
)
with gr.Group(visible=google_default) as search_options:
with gr.Row():
scholar_mode_check = gr.Checkbox(label="Enable Scholar Mode", value=False)
with gr.Group(visible=True) as site_options:
with gr.Row():
include_sites = gr.Textbox(
label="Include Specific Websites",
placeholder="Enter comma-separated keywords",
elem_classes="input-highlight-yellow",
)
with gr.Row():
exclude_sites = gr.Textbox(
label="Exclude Specific Websites",
placeholder="Enter comma-separated keywords",
elem_classes="input-highlight-yellow",
)
with gr.Row():
domains_to_include = gr.Dropdown(
domain_list,
value=domain_list,
multiselect=True,
label="Domains To Include",
)
with gr.Row():
month_from = gr.Dropdown(
choices=months,
label="From Month",
value="January",
interactive=True,
)
day_from = gr.Textbox(label="From Day", value="01")
year_from = gr.Textbox(label="From Year", value="2000")
with gr.Row():
month_to = gr.Dropdown(
choices=months,
label="To Month",
value=d1[1],
interactive=True,
)
day_to = gr.Textbox(label="To Day", value=d1[0])
year_to = gr.Textbox(label="To Year", value=d1[2])
gr.Markdown("# Add Optional PDF Files with Information", elem_classes="text-center text-3xl mb-6")
pdf_file_input = gr.File(label="Upload PDF(s)", file_count="multiple", file_types=[".pdf"])
gr.Markdown("# Add Youtube Video Link", elem_classes="text-center text-3xl mb-6")
yt_url = gr.Textbox(
label="Youtube Video Link",
placeholder="Enter the link of the video",
elem_classes="input-highlight-pink",
)
"""
# NOTE: HIDE AI MODEL SELECTION
with gr.Group():
gr.Markdown("## AI Model Configuration", elem_classes="text-xl mb-4")
ai_generator = gr.Dropdown(
choices=[
"OpenAI GPT 4",
"OpenAI GPT 4o",
"OpenAI GPT 4o Mini",
"Claude Sonnet 3.5",
"Gemini 1.5 Pro",
"LLaMA 3",
],
value="OpenAI GPT 4o Mini",
label="AI Model",
elem_classes="input-highlight-pink",
)
input_api = gr.Textbox(label="API Key", visible=False)
ai_generator.change(update_visibility_api, ai_generator, input_api)
"""
generate_btn = gr.Button("Generate Article", variant="primary")
with gr.Column(scale=2):
with gr.Tab("Text Generator"):
output_article = gr.HTML(
value="""<div style="height: 600px;"></div>""",
label="Generated Article",
)
with gr.Accordion("Regenerate Article", open=False):
ai_comments = gr.Textbox(
label="Add comments to help edit generated text", interactive=True, visible=True
)
regenerate_btn = gr.Button("Regenerate Article", variant="primary", visible=True)
ai_detector_dropdown = gr.Dropdown(
choices=ai_check_options, label="Select AI Detector", value="Polygraf AI (Base Model)"
)
ai_check_btn = gr.Button("AI Check")
with gr.Accordion("AI Detection Results", open=True):
ai_check_result = gr.Label(label="AI Check Result")
mc_check_result = gr.Label(label="Creator Check Result")
highlighted_text = gr.HTML(label="Sentence Breakdown", visible=False)
with gr.Accordion("Advanced Humanizer Settings", open=False):
with gr.Row():
model_dropdown = gr.Radio(
choices=["Advanced Model (Beta)"],
value="Advanced Model (Beta)",
label="Humanizer Model Version",
)
with gr.Row():
temperature_slider = gr.Slider(
minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature"
)
top_k_slider = gr.Slider(minimum=0, maximum=300, step=25, value=40, label="Top k")
with gr.Row():
repetition_penalty_slider = gr.Slider(
minimum=1.0, maximum=2.0, step=0.1, value=1, label="Repetition Penalty"
)
length_penalty_slider = gr.Slider(
minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Length Penalty"
)
humanize_btn = gr.Button("Humanize")
with gr.Row(equal_height=False):
with gr.Column():
humanizer_feedback = gr.Textbox(label="Add optional feedback on humanizer")
with gr.Column():
report_humanized_btn = gr.Button("Report Humanized Text", variant="primary", visible=True)
# humanized_output = gr.Markdown(label="Humanized Article", value="\n\n\n\n", render=True)
# copy_to_input_btn = gr.Button("Copy to Input for AI Check")
with gr.Tab("History"):
history_chat = gr.Chatbot(label="Generation History", height=1000)
clear_history_btn = gr.Button("Clear History")
clear_history_btn.click(clear_history, outputs=[history, history_chat])
"""
# NOTE: REMOVED REFRESH BUTTON
refresh_button = gr.Button("Refresh History")
refresh_button.click(get_history, outputs=history_chat)
"""
def regenerate_visible(text):
if text:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def highlight_visible(text):
if text.startswith("Polygraf"):
return gr.update(visible=True)
else:
return gr.update(visible=False)
def search_visible(toggle):
if toggle:
return gr.update(visible=True)
else:
return gr.update(visible=False)
google_search_check.change(
lambda toggle: gr.update(visible=toggle), inputs=google_search_check, outputs=search_options
)
# ai_detector_dropdown.change(highlight_visible, inputs=ai_detector_dropdown, outputs=highlighted_text)
# output_article.change(regenerate_visible, inputs=output_article, outputs=ai_comments)
# ai_comments.change(regenerate_visible, inputs=output_article, outputs=regenerate_btn)
ai_check_btn.click(highlight_visible, inputs=ai_detector_dropdown, outputs=highlighted_text)
# Update the default structure based on the selected format
# e.g. "Plain Text" for certain formats
input_format.change(fn=update_structure, inputs=input_format, outputs=input_structure)
report_humanized_btn.click(
save_humanizer_feedback_to_cloud_storage, inputs=[latest_humanizer_data, humanizer_feedback]
)
generate_btn.click(
fn=generate_and_format,
inputs=[
input_role,
input_topic,
input_context,
input_keywords,
input_length,
input_format,
input_writing_style,
input_tone,
input_user_category,
input_depth,
input_structure,
input_references,
input_num_examples,
input_conclusion,
# ai_generator,
# input_api,
google_search_check,
scholar_mode_check,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_include,
include_sites,
exclude_sites,
pdf_file_input,
history,
yt_url,
],
outputs=[output_article, history],
)
regenerate_btn.click(
fn=generate_and_format,
inputs=[
input_role,
input_topic,
input_context,
input_keywords,
input_length,
input_format,
input_writing_style,
input_tone,
input_user_category,
input_depth,
input_structure,
input_references,
input_num_examples,
input_conclusion,
# ai_generator,
# input_api,
google_search_check,
scholar_mode_check,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_include,
pdf_file_input,
history,
output_article,
include_sites,
exclude_sites,
ai_comments,
],
outputs=[output_article, history],
)
ai_check_btn.click(
fn=ai_check,
inputs=[history, ai_detector_dropdown],
outputs=[ai_check_result, highlighted_text, mc_check_result],
)
humanize_btn.click(
fn=humanize,
inputs=[
model_dropdown,
output_article,
temperature_slider,
repetition_penalty_slider,
top_k_slider,
length_penalty_slider,
history,
],
outputs=[output_article, history, latest_humanizer_data],
)
generate_btn.click(get_history, inputs=[history], outputs=[history_chat])
regenerate_btn.click(get_history, inputs=[history], outputs=[history_chat])
humanize_btn.click(get_history, inputs=[history], outputs=[history_chat])
# return demo
if __name__ == "__main__":
# demo = create_interface()
demo.queue(
max_size=2,
default_concurrency_limit=2,
).launch(server_name="0.0.0.0", share=True, server_port=7890)
# demo.launch(server_name="0.0.0.0")
|