Chananchida's picture
Update app.py
c17251d verified
raw
history blame
7.21 kB
import time
import numpy as np
import pandas as pd
import torch
import faiss
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer
import pickle
import gradio as gr
print(torch.cuda.is_available())
__all__ = [
"mdeberta",
"wangchanberta-hyp", # Best model
]
predict_method = [
"faiss",
"faissWithModel",
"cosineWithModel",
"semanticSearchWithModel",
]
DEFAULT_MODEL = 'wangchanberta-hyp'
DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base'
MODEL_DICT = {
'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params',
'wangchanberta-hyp': 'Chananchida/wangchanberta-th-wiki-qa_hyp-params',
'mdeberta': 'Chananchida/mdeberta-v3-th-wiki-qa_ref-params',
'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params',
}
DATA_PATH = 'models/dataset.xlsx'
EMBEDDINGS_PATH = 'models/embeddings.pkl'
class ChatbotModel:
def __init__(self, model=DEFAULT_MODEL):
self._chatbot = Chatbot()
self._chatbot.load_data()
self._chatbot.load_model(model)
self._chatbot.load_embedding_model(DEFAULT_SENTENCE_EMBEDDING_MODEL)
self._chatbot.set_vectors()
self._chatbot.set_index()
def chat(self, question):
return self._chatbot.answer_question(question)
def eval(self, model, predict_method):
return self._chatbot.eval(model_name=model, predict_method=predict_method)
class Chatbot:
def __init__(self):
# Initialize variables
self.df = None
self.test_df = None
self.model = None
self.model_name = None
self.tokenizer = None
self.embedding_model = None
self.vectors = None
self.index = None
self.k = 1 # top k most similar
def load_data(self, path: str = DATA_PATH):
self.df = pd.read_excel(path, sheet_name='Default')
self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
def load_model(self, model_name: str = DEFAULT_MODEL):
self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
self.model_name = model_name
def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL):
if torch.cuda.is_available():
self.embedding_model = SentenceTransformer(model_name, device='cuda')
else:
self.embedding_model = SentenceTransformer(model_name)
def set_vectors(self):
self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH))
def set_index(self):
if torch.cuda.is_available():
res = faiss.StandardGpuResources()
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index)
gpu_index_flat.add(self.vectors)
self.index = gpu_index_flat
else:
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
self.index.add(self.vectors)
def get_embeddings(self, text_list):
return self.embedding_model.encode(text_list)
def prepare_sentences_vector(self, encoded_list):
encoded_list = [i.reshape(1, -1) for i in encoded_list]
encoded_list = np.vstack(encoded_list).astype('float32')
encoded_list = normalize(encoded_list)
return encoded_list
def store_embeddings(self, embeddings):
with open('models/embeddings.pkl', "wb") as fOut:
pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
def load_embeddings(self, file_path):
with open(file_path, "rb") as fIn:
stored_data = pickle.load(fIn)
stored_sentences = stored_data['sentences']
stored_embeddings = stored_data['embeddings']
return stored_embeddings
def model_pipeline(self, question, similar_context):
inputs = self.tokenizer(question, similar_context, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
answer_start_index = outputs.start_logits.argmax()
answer_end_index = outputs.end_logits.argmax()
predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
Answer = self.tokenizer.decode(predict_answer_tokens)
return Answer
def faiss_search(self, question_vector):
distances, indices = self.index.search(question_vector, self.k)
similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)]
similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)]
return similar_questions, similar_contexts, distances, indices
def predict(self, message):
message = message.strip()
question_vector = self.get_embeddings(message)
question_vector = self.prepare_sentences_vector([question_vector])
similar_questions, similar_contexts, distances, indices = self.faiss_search(question_vector)
Answer = self.model_pipeline(str(message), similar_contexts[0])
start_index = similar_contexts.find(Answer)
end_index = start_index + len(Answer)
output = {
"user_question": message,
"answer": self.df['Answer'][indices[0][0]],
"distance": round(distances[0][0], 4),
"highlight_start": start_index,
"highlight_end": end_index
}
return output
def highlight_text(text, start_index, end_index):
if start_index < 0:
start_index = 0
if end_index > len(text):
end_index = len(text)
highlighted_text = ""
for i, char in enumerate(text):
if i == start_index:
highlighted_text += "<mark>"
highlighted_text += char
if i == end_index - 1:
highlighted_text += "</mark>"
return highlighted_text
if __name__ == "__main__":
bot = ChatbotModel()
def chat_interface(question, history):
response = bot._chatbot.predict(question)
highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
return highlighted_answer
EXAMPLE = ["หลิน ไห่เฟิง มีชื่อเรียกอีกชื่อว่าอะไร" , "ใครเป็นผู้ตั้งสภาเศรษฐกิจโลกขึ้นในปี พ.ศ. 2514 โดยทุกปีจะมีการประชุมที่ประเทศสวิตเซอร์แลนด์", "โปรดิวเซอร์ของอัลบั้มตลอดกาล ของวงคีรีบูนคือใคร", "สกุลเดิมของหม่อมครูนุ่ม นวรัตน ณ อยุธยา คืออะไร"]
demo = gr.ChatInterface(fn=chat_interface, examples=EXAMPLE, title="CE66-04: Thai Question Answering System by using Deep Learning")
demo.launch()