Spaces:
Building
on
CPU Upgrade
Building
on
CPU Upgrade
File size: 14,382 Bytes
ce70f59 67244f5 ce70f59 be8150a 0bcfca3 be8150a ce70f59 0bcfca3 ce70f59 be8150a 0bcfca3 be8150a 0bcfca3 be8150a 0bcfca3 be8150a 0bcfca3 be8150a 0bcfca3 be8150a 0bcfca3 67244f5 ce70f59 67244f5 be8150a ce70f59 be8150a ce70f59 67244f5 be8150a 67244f5 be8150a 67244f5 be8150a 67244f5 be8150a 67244f5 be8150a 67244f5 be8150a 67244f5 be8150a 67244f5 0bcfca3 67244f5 be8150a 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 c04d669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from pathlib import Path
import numpy as np
import gradio as gr
import requests
from typing import List
# Define the COLUMN_MIN_MAX as provided
COLUMN_MIN_MAX = {
"Age": (18, 100),
"Blood_Glucose_Level": (0, 300),
"Blood_Pressure_Systolic": (80, 200),
"Blood_Pressure_Diastolic": (40, 120),
"BMI": (10, 50),
"Condition_Severity": (1, 10),
"Gender": (0, 2),
"Ethnicity": (0, 5),
"Geographic_Location": (0, 6),
"Smoking_Status": (0, 2),
"Diagnoses_ICD10": (0, 5),
"Medications": (0, 7),
"Allergies": (0, 5),
"Previous_Treatments": (0, 5),
"Alcohol_Consumption": (0, 3),
"Exercise_Habits": (0, 4),
"Diet": (0, 5),
"Functional_Status": (0, 2),
"Previous_Trial_Participation": (0, 1),
}
# Define possible categories for fields without predefined categories
additional_categories = {
"Gender": ["Male", "Female", "Other"],
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"],
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"],
"Smoking_Status": ["Never", "Former", "Current"],
"Diagnoses_ICD10": ["Actinic keratosis", "Melanoma", "Dermatofibroma", "Vascular lesion","None"],
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"],
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"],
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"],
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"],
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"],
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"],
"Functional_Status": ["Independent", "Assisted", "Dependent"],
"Previous_Trial_Participation": ["Yes", "No"]
}
# Define the input components for the researcher form with constraints
min_age_input = gr.Number(label="Minimum Age", value=18, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1])
max_age_input = gr.Number(label="Maximum Age", value=100, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1])
gender_input = gr.CheckboxGroup(choices=additional_categories["Gender"], label="Gender", value=["Male"])
ethnicity_input = gr.CheckboxGroup(choices=additional_categories["Ethnicity"], label="Ethnicity", value=["White"])
geographic_location_input = gr.CheckboxGroup(choices=additional_categories["Geographic_Location"], label="Geographic Location", value=["North America"])
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Skin Diagnosis", value=["Actinic keratosis"])
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications", value=["Metformin"])
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies", value=["Peanuts"])
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments", value=["None"])
min_blood_glucose_level_input = gr.Number(label="Minimum Blood Glucose Level", value=0, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1])
max_blood_glucose_level_input = gr.Number(label="Maximum Blood Glucose Level", value=3, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1])
blood_glucose_level_input = gr.Number(label="Blood Glucose Level", value=100, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1])
min_blood_pressure_systolic_input = gr.Number(label="Minimum Blood Pressure (Systolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1])
max_blood_pressure_systolic_input = gr.Number(label="Maximum Blood Pressure (Systolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1])
blood_pressure_systolic_input = gr.Number(label="Blood Pressure (Systolic)", value=120, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1])
min_blood_pressure_diastolic_input = gr.Number(label="Minimum Blood Pressure (Diastolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1])
max_blood_pressure_diastolic_input = gr.Number(label="Maximum Blood Pressure (Diastolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1])
blood_pressure_diastolic_input = gr.Number(label="Blood Pressure (Diastolic)", value=80, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1])
min_bmi_input = gr.Number(label="Minimum BMI", value=0, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1])
max_bmi_input = gr.Number(label="Maximum BMI", value=3, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1])
bmi_input = gr.Number(label="BMI", value=20, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1])
smoking_status_input = gr.CheckboxGroup(choices=additional_categories["Smoking_Status"], label="Smoking Status", value=["Never"])
alcohol_consumption_input = gr.CheckboxGroup(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption", value=["None"])
exercise_habits_input = gr.CheckboxGroup(choices=additional_categories["Exercise_Habits"], label="Exercise Habits", value=["Sedentary"])
diet_input = gr.CheckboxGroup(choices=additional_categories["Diet"], label="Diet", value=["Omnivore"])
condition_severity_input = gr.Number(label="Condition Severity", value=5, minimum=0, maximum=10)
functional_status_input = gr.CheckboxGroup(choices=additional_categories["Functional_Status"], label="Functional Status", value=["Independent"])
previous_trial_participation_input = gr.CheckboxGroup(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation", value=["No"])
# Define the server's URL
SERVER_URL = "https://affordable-prot-bind-clarke.trycloudflare.com/requirements/create" # Ensure this is the correct endpoint
def encode_categorical_data(data: List[str], category_name: str) -> List[int]:
"""Encodes a list of categorical values into their corresponding indices based on additional_categories."""
sub_cats = additional_categories.get(category_name, [])
encoded_data = []
for value in data:
if value in sub_cats:
encoded_index = sub_cats.index(value)
# Validate that the encoded index is within the specified range
min_val, max_val = COLUMN_MIN_MAX.get(category_name, (0, len(sub_cats)-1))
if min_val <= encoded_index <= max_val:
encoded_data.append(encoded_index)
else:
print(f"Encoded value for {category_name}='{value}' is out of range. Setting to 0.")
encoded_data.append(0)
else:
print(f"Value '{value}' not recognized in category '{category_name}'. Setting to 0.")
encoded_data.append(0)
return encoded_data
def process_researcher_data(
min_age, max_age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments,
min_blood_glucose_level, max_blood_glucose_level, min_blood_pressure_systolic, max_blood_pressure_systolic,
min_blood_pressure_diastolic, max_blood_pressure_diastolic, min_bmi, max_bmi, smoking_status, alcohol_consumption,
exercise_habits, diet, min_condition_severity, max_condition_severity, functional_status, previous_trial_participation
):
# Encode categorical data
encoded_gender = encode_categorical_data(gender, "Gender")
encoded_ethnicity = encode_categorical_data(ethnicity, "Ethnicity")
encoded_geographic_location = encode_categorical_data(geographic_location, "Geographic_Location")
encoded_diagnoses_icd10 = encode_categorical_data(diagnoses_icd10, "Diagnoses_ICD10")
encoded_medications = encode_categorical_data(medications, "Medications")
encoded_allergies = encode_categorical_data(allergies, "Allergies")
encoded_previous_treatments = encode_categorical_data(previous_treatments, "Previous_Treatments")
encoded_smoking_status = encode_categorical_data(smoking_status, "Smoking_Status")
encoded_alcohol_consumption = encode_categorical_data(alcohol_consumption, "Alcohol_Consumption")
encoded_exercise_habits = encode_categorical_data(exercise_habits, "Exercise_Habits")
encoded_diet = encode_categorical_data(diet, "Diet")
encoded_functional_status = encode_categorical_data(functional_status, "Functional_Status")
encoded_previous_trial_participation = encode_categorical_data(previous_trial_participation, "Previous_Trial_Participation")
# Create a list of requirements
requirements = []
# Add numerical requirements
numerical_fields = [
("Age", min_age, "greater_than"),
("Age", max_age, "less_than"),
("Blood_Glucose_Level", min_blood_glucose_level, "greater_than"),
("Blood_Glucose_Level", max_blood_glucose_level, "less_than"),
("Blood_Pressure_Systolic", min_blood_pressure_systolic, "greater_than"),
("Blood_Pressure_Systolic", max_blood_pressure_systolic, "less_than"),
("Blood_Pressure_Diastolic", min_blood_pressure_diastolic, "greater_than"),
("Blood_Pressure_Diastolic", max_blood_pressure_diastolic, "less_than"),
("BMI", min_bmi, "greater_than"),
("BMI", max_bmi, "less_than"),
("Condition_Severity", min_condition_severity, "greater_than"),
("Condition_Severity", max_condition_severity, "less_than"),
]
for field, value, comparison in numerical_fields:
if value is not None:
# Ensure the value is within the specified range
min_val, max_val = COLUMN_MIN_MAX.get(field, (None, None))
if min_val is not None and max_val is not None:
if not (min_val <= value <= max_val):
print(f"Value for {field}={value} is out of range ({min_val}, {max_val}). Adjusting to fit within range.")
value = max(min(value, max_val), min_val)
requirements.append({
"column_name": field,
"value": value,
"comparison_type": comparison
})
# Add categorical requirements
categorical_fields = [
("Gender", encoded_gender, "equal"),
("Ethnicity", encoded_ethnicity, "equal"),
("Geographic_Location", encoded_geographic_location, "equal"),
("Diagnoses_ICD10", encoded_diagnoses_icd10, "equal"),
("Medications", encoded_medications, "equal"),
("Allergies", encoded_allergies, "equal"),
("Previous_Treatments", encoded_previous_treatments, "equal"),
("Smoking_Status", encoded_smoking_status, "equal"),
("Alcohol_Consumption", encoded_alcohol_consumption, "equal"),
("Exercise_Habits", encoded_exercise_habits, "equal"),
("Diet", encoded_diet, "equal"),
("Functional_Status", encoded_functional_status, "equal"),
("Previous_Trial_Participation", encoded_previous_trial_participation, "equal"),
]
for field, encoded_values, comparison in categorical_fields:
min_val, max_val = COLUMN_MIN_MAX.get(field, (0, len(additional_categories[field])-1))
for encoded in encoded_values:
if min_val <= encoded <= max_val:
requirements.append({
"column_name": field,
"value": encoded,
"comparison_type": comparison
})
else:
print(f"Encoded value {encoded} for {field} is out of range ({min_val}, {max_val}). Skipping.")
# Encode and add non-categorical fields like medications, allergies, previous treatments
# Already handled above in categorical_fields
# Construct the payload as a regular dictionary
payload = {
"model_name": "second_model",
"requirements": requirements
}
print("Payload to send:", payload) # For debugging
# Make the request to the server
try:
res = requests.post(SERVER_URL, json=payload)
res.raise_for_status() # Raise an error for bad status codes
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}") # For debugging
return f"HTTP error occurred: {http_err}"
except Exception as err:
print(f"Other error occurred: {err}") # For debugging
return f"Other error occurred: {err}"
# Get the response from the server
try:
response = res.json()
print("Server response:", response)
except ValueError:
print("Response is not in JSON format.")
return "Response is not in JSON format."
return response.get("message", "No message received from server")
# Create the Gradio interface for researchers
researcher_demo = gr.Interface(
fn=process_researcher_data,
inputs=[
min_age_input, max_age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input,
medications_input, allergies_input, previous_treatments_input, min_blood_glucose_level_input,
max_blood_glucose_level_input, min_blood_pressure_systolic_input, max_blood_pressure_systolic_input,
min_blood_pressure_diastolic_input, max_blood_pressure_diastolic_input, min_bmi_input, max_bmi_input,
smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input,
min_condition_severity_input, max_condition_severity_input, functional_status_input, previous_trial_participation_input
],
outputs="text",
title="Clinical Researcher Criteria Form",
description="Please enter the criteria for the type of patients you are looking for."
)
# Launch the researcher interface with a public link
if __name__ == "__main__":
researcher_demo.launch(share=False)
|