File size: 14,382 Bytes
ce70f59
 
 
 
67244f5
ce70f59
be8150a
 
 
0bcfca3
 
 
 
 
be8150a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce70f59
 
 
 
 
 
0bcfca3
ce70f59
 
 
 
 
 
 
 
 
 
be8150a
 
 
 
0bcfca3
 
 
 
 
 
 
be8150a
 
 
0bcfca3
be8150a
 
 
0bcfca3
be8150a
 
 
0bcfca3
be8150a
 
 
0bcfca3
 
 
 
 
 
 
 
 
be8150a
0bcfca3
67244f5
 
 
 
ce70f59
67244f5
 
be8150a
 
 
 
 
 
 
 
ce70f59
be8150a
 
ce70f59
 
67244f5
 
 
 
 
 
 
 
 
 
 
be8150a
 
 
67244f5
 
 
 
 
 
 
 
 
 
 
be8150a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67244f5
be8150a
 
 
67244f5
 
be8150a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67244f5
be8150a
 
 
67244f5
be8150a
 
67244f5
be8150a
 
67244f5
 
 
0bcfca3
67244f5
 
 
be8150a
67244f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce70f59
67244f5
 
 
 
 
 
ce70f59
 
67244f5
 
ce70f59
 
67244f5
 
c04d669
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from pathlib import Path
import numpy as np
import gradio as gr
import requests
from typing import List

# Define the COLUMN_MIN_MAX as provided
COLUMN_MIN_MAX = {
    "Age": (18, 100),
    "Blood_Glucose_Level": (0, 300),
    "Blood_Pressure_Systolic": (80, 200),
    "Blood_Pressure_Diastolic": (40, 120),
    "BMI": (10, 50),
    "Condition_Severity": (1, 10),
    "Gender": (0, 2),
    "Ethnicity": (0, 5),
    "Geographic_Location": (0, 6),
    "Smoking_Status": (0, 2),
    "Diagnoses_ICD10": (0, 5),
    "Medications": (0, 7),
    "Allergies": (0, 5),
    "Previous_Treatments": (0, 5),
    "Alcohol_Consumption": (0, 3),
    "Exercise_Habits": (0, 4),
    "Diet": (0, 5),
    "Functional_Status": (0, 2),
    "Previous_Trial_Participation": (0, 1),
}

# Define possible categories for fields without predefined categories
additional_categories = {
    "Gender": ["Male", "Female", "Other"],
    "Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"],
    "Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"],
    "Smoking_Status": ["Never", "Former", "Current"],
    "Diagnoses_ICD10": ["Actinic keratosis", "Melanoma", "Dermatofibroma", "Vascular lesion","None"],
    "Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"],
    "Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"],
    "Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"],
    "Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"],
    "Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"],
    "Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"],
    "Functional_Status": ["Independent", "Assisted", "Dependent"],
    "Previous_Trial_Participation": ["Yes", "No"]
}

# Define the input components for the researcher form with constraints
min_age_input = gr.Number(label="Minimum Age", value=18, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1])
max_age_input = gr.Number(label="Maximum Age", value=100, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1])

gender_input = gr.CheckboxGroup(choices=additional_categories["Gender"], label="Gender", value=["Male"])
ethnicity_input = gr.CheckboxGroup(choices=additional_categories["Ethnicity"], label="Ethnicity", value=["White"])
geographic_location_input = gr.CheckboxGroup(choices=additional_categories["Geographic_Location"], label="Geographic Location", value=["North America"])
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Skin Diagnosis", value=["Actinic keratosis"])
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications", value=["Metformin"])
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies", value=["Peanuts"])
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments", value=["None"])

min_blood_glucose_level_input = gr.Number(label="Minimum Blood Glucose Level", value=0, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1])
max_blood_glucose_level_input = gr.Number(label="Maximum Blood Glucose Level", value=3, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1])
blood_glucose_level_input = gr.Number(label="Blood Glucose Level", value=100, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1])

min_blood_pressure_systolic_input = gr.Number(label="Minimum Blood Pressure (Systolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1])
max_blood_pressure_systolic_input = gr.Number(label="Maximum Blood Pressure (Systolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1])
blood_pressure_systolic_input = gr.Number(label="Blood Pressure (Systolic)", value=120, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1])

min_blood_pressure_diastolic_input = gr.Number(label="Minimum Blood Pressure (Diastolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1])
max_blood_pressure_diastolic_input = gr.Number(label="Maximum Blood Pressure (Diastolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1])
blood_pressure_diastolic_input = gr.Number(label="Blood Pressure (Diastolic)", value=80, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1])

min_bmi_input = gr.Number(label="Minimum BMI", value=0, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1])
max_bmi_input = gr.Number(label="Maximum BMI", value=3, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1])
bmi_input = gr.Number(label="BMI", value=20, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1])

smoking_status_input = gr.CheckboxGroup(choices=additional_categories["Smoking_Status"], label="Smoking Status", value=["Never"])
alcohol_consumption_input = gr.CheckboxGroup(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption", value=["None"])
exercise_habits_input = gr.CheckboxGroup(choices=additional_categories["Exercise_Habits"], label="Exercise Habits", value=["Sedentary"])
diet_input = gr.CheckboxGroup(choices=additional_categories["Diet"], label="Diet", value=["Omnivore"])
condition_severity_input = gr.Number(label="Condition Severity", value=5, minimum=0, maximum=10)
functional_status_input = gr.CheckboxGroup(choices=additional_categories["Functional_Status"], label="Functional Status", value=["Independent"])
previous_trial_participation_input = gr.CheckboxGroup(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation", value=["No"])
# Define the server's URL
SERVER_URL = "https://affordable-prot-bind-clarke.trycloudflare.com/requirements/create"  # Ensure this is the correct endpoint

def encode_categorical_data(data: List[str], category_name: str) -> List[int]:
    """Encodes a list of categorical values into their corresponding indices based on additional_categories."""
    sub_cats = additional_categories.get(category_name, [])
    encoded_data = []
    for value in data:
        if value in sub_cats:
            encoded_index = sub_cats.index(value)
            # Validate that the encoded index is within the specified range
            min_val, max_val = COLUMN_MIN_MAX.get(category_name, (0, len(sub_cats)-1))
            if min_val <= encoded_index <= max_val:
                encoded_data.append(encoded_index)
            else:
                print(f"Encoded value for {category_name}='{value}' is out of range. Setting to 0.")
                encoded_data.append(0)
        else:
            print(f"Value '{value}' not recognized in category '{category_name}'. Setting to 0.")
            encoded_data.append(0)
    return encoded_data

def process_researcher_data(
    min_age, max_age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments,
    min_blood_glucose_level, max_blood_glucose_level, min_blood_pressure_systolic, max_blood_pressure_systolic,
    min_blood_pressure_diastolic, max_blood_pressure_diastolic, min_bmi, max_bmi, smoking_status, alcohol_consumption,
    exercise_habits, diet, min_condition_severity, max_condition_severity, functional_status, previous_trial_participation
):
    # Encode categorical data
    encoded_gender = encode_categorical_data(gender, "Gender")
    encoded_ethnicity = encode_categorical_data(ethnicity, "Ethnicity")
    encoded_geographic_location = encode_categorical_data(geographic_location, "Geographic_Location")
    encoded_diagnoses_icd10 = encode_categorical_data(diagnoses_icd10, "Diagnoses_ICD10")
    encoded_medications = encode_categorical_data(medications, "Medications")
    encoded_allergies = encode_categorical_data(allergies, "Allergies")
    encoded_previous_treatments = encode_categorical_data(previous_treatments, "Previous_Treatments")
    encoded_smoking_status = encode_categorical_data(smoking_status, "Smoking_Status")
    encoded_alcohol_consumption = encode_categorical_data(alcohol_consumption, "Alcohol_Consumption")
    encoded_exercise_habits = encode_categorical_data(exercise_habits, "Exercise_Habits")
    encoded_diet = encode_categorical_data(diet, "Diet")
    encoded_functional_status = encode_categorical_data(functional_status, "Functional_Status")
    encoded_previous_trial_participation = encode_categorical_data(previous_trial_participation, "Previous_Trial_Participation")

    # Create a list of requirements
    requirements = []

    # Add numerical requirements
    numerical_fields = [
        ("Age", min_age, "greater_than"),
        ("Age", max_age, "less_than"),
        ("Blood_Glucose_Level", min_blood_glucose_level, "greater_than"),
        ("Blood_Glucose_Level", max_blood_glucose_level, "less_than"),
        ("Blood_Pressure_Systolic", min_blood_pressure_systolic, "greater_than"),
        ("Blood_Pressure_Systolic", max_blood_pressure_systolic, "less_than"),
        ("Blood_Pressure_Diastolic", min_blood_pressure_diastolic, "greater_than"),
        ("Blood_Pressure_Diastolic", max_blood_pressure_diastolic, "less_than"),
        ("BMI", min_bmi, "greater_than"),
        ("BMI", max_bmi, "less_than"),
        ("Condition_Severity", min_condition_severity, "greater_than"),
        ("Condition_Severity", max_condition_severity, "less_than"),
    ]

    for field, value, comparison in numerical_fields:
        if value is not None:
            # Ensure the value is within the specified range
            min_val, max_val = COLUMN_MIN_MAX.get(field, (None, None))
            if min_val is not None and max_val is not None:
                if not (min_val <= value <= max_val):
                    print(f"Value for {field}={value} is out of range ({min_val}, {max_val}). Adjusting to fit within range.")
                    value = max(min(value, max_val), min_val)
            requirements.append({
                "column_name": field,
                "value": value,
                "comparison_type": comparison
            })

    # Add categorical requirements
    categorical_fields = [
        ("Gender", encoded_gender, "equal"),
        ("Ethnicity", encoded_ethnicity, "equal"),
        ("Geographic_Location", encoded_geographic_location, "equal"),
        ("Diagnoses_ICD10", encoded_diagnoses_icd10, "equal"),
        ("Medications", encoded_medications, "equal"),
        ("Allergies", encoded_allergies, "equal"),
        ("Previous_Treatments", encoded_previous_treatments, "equal"),
        ("Smoking_Status", encoded_smoking_status, "equal"),
        ("Alcohol_Consumption", encoded_alcohol_consumption, "equal"),
        ("Exercise_Habits", encoded_exercise_habits, "equal"),
        ("Diet", encoded_diet, "equal"),
        ("Functional_Status", encoded_functional_status, "equal"),
        ("Previous_Trial_Participation", encoded_previous_trial_participation, "equal"),
    ]

    for field, encoded_values, comparison in categorical_fields:
        min_val, max_val = COLUMN_MIN_MAX.get(field, (0, len(additional_categories[field])-1))
        for encoded in encoded_values:
            if min_val <= encoded <= max_val:
                requirements.append({
                    "column_name": field,
                    "value": encoded,
                    "comparison_type": comparison
                })
            else:
                print(f"Encoded value {encoded} for {field} is out of range ({min_val}, {max_val}). Skipping.")

    # Encode and add non-categorical fields like medications, allergies, previous treatments
    # Already handled above in categorical_fields

    # Construct the payload as a regular dictionary
    payload = {
        "model_name": "second_model",
        "requirements": requirements
    }

    print("Payload to send:", payload)  # For debugging

    # Make the request to the server
    try:
        res = requests.post(SERVER_URL, json=payload)
        res.raise_for_status()  # Raise an error for bad status codes
    except requests.exceptions.HTTPError as http_err:
        print(f"HTTP error occurred: {http_err}")  # For debugging
        return f"HTTP error occurred: {http_err}"
    except Exception as err:
        print(f"Other error occurred: {err}")  # For debugging
        return f"Other error occurred: {err}"

    # Get the response from the server
    try:
        response = res.json()
        print("Server response:", response)
    except ValueError:
        print("Response is not in JSON format.")
        return "Response is not in JSON format."

    return response.get("message", "No message received from server")

# Create the Gradio interface for researchers
researcher_demo = gr.Interface(
    fn=process_researcher_data, 
    inputs=[
        min_age_input, max_age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input, 
        medications_input, allergies_input, previous_treatments_input, min_blood_glucose_level_input, 
        max_blood_glucose_level_input, min_blood_pressure_systolic_input, max_blood_pressure_systolic_input, 
        min_blood_pressure_diastolic_input, max_blood_pressure_diastolic_input, min_bmi_input, max_bmi_input, 
        smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input, 
        min_condition_severity_input, max_condition_severity_input, functional_status_input, previous_trial_participation_input
    ], 
    outputs="text",
    title="Clinical Researcher Criteria Form",
    description="Please enter the criteria for the type of patients you are looking for."
)

# Launch the researcher interface with a public link
if __name__ == "__main__":
    researcher_demo.launch(share=False)