Spaces:
Sleeping
Sleeping
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer | |
# Setup the client | |
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client") | |
serialized_evaluation_keys = client.get_serialized_evaluation_keys() | |
# Load the dataset and select the relevant features | |
data = pd.read_csv('data/heart.xls') | |
# Perform the correlation analysis | |
data_corr = data.corr() | |
# Select features based on correlation with 'output' | |
feature_value = np.array(data_corr['output']) | |
for i in range(len(feature_value)): | |
if feature_value[i] < 0: | |
feature_value[i] = -feature_value[i] | |
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation']) | |
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False) | |
feature_selected = feature_sorted.index | |
# Clean the data by selecting the most correlated features | |
clean_data = data[feature_selected] | |
# Extract the first row of feature data for prediction (excluding 'output' column) | |
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input | |
encrypted_data = client.quantize_encrypt_serialize(sample_data) | |