Spaces:
Sleeping
Sleeping
File size: 26,565 Bytes
0ca0215 646bd9e 67fa189 174cd37 67fa189 174cd37 67fa189 646bd9e 67fa189 646bd9e 67fa189 174cd37 0ca0215 d812385 67fa189 1a494e6 9dd9ca7 39a183a cf6aebf 67fa189 174cd37 67fa189 3314e4b 67fa189 cf6aebf 67fa189 7cb14dd 67fa189 ce217e0 c10f4f8 67fa189 646bd9e 67fa189 646bd9e 67fa189 df6182e 646bd9e 7cb14dd 174cd37 7cb14dd 174cd37 ce217e0 174cd37 67fa189 174cd37 67fa189 174cd37 67fa189 1a494e6 67fa189 1a494e6 174cd37 d812385 67fa189 174cd37 7cb14dd ce217e0 7cb14dd ce217e0 7cb14dd ce217e0 7cb14dd ce217e0 84bd8b7 ce217e0 2477997 3d1492d 0a5d4c9 174cd37 67fa189 174cd37 67fa189 ce217e0 174cd37 67fa189 174cd37 cf6aebf 67fa189 cf6aebf 67fa189 cf6aebf 67fa189 cf6aebf 67fa189 cf6aebf dc83cd7 67fa189 cf6aebf 67fa189 174cd37 7cb14dd 174cd37 67fa189 ce217e0 67fa189 174cd37 67fa189 174cd37 67fa189 174cd37 67fa189 ce217e0 174cd37 67fa189 ce217e0 174cd37 67fa189 174cd37 67fa189 bd20950 67fa189 ce217e0 67fa189 ce217e0 67fa189 ce217e0 67fa189 ce217e0 67fa189 ce217e0 67fa189 2b591f4 646bd9e 2b591f4 67fa189 dc83cd7 67fa189 646bd9e ce217e0 67fa189 ce217e0 67fa189 9023283 67fa189 9023283 174cd37 9023283 dc83cd7 798b3ec 488bc06 2ad72ff 488bc06 2ad72ff 488bc06 798b3ec b72d974 df6182e b160148 646bd9e b160148 c34cba5 9023283 646bd9e 630144b 646bd9e 630144b 74ddbda 646bd9e 174cd37 646bd9e 74ddbda 646bd9e ce217e0 74ddbda ce217e0 0ca0215 ce217e0 0ca0215 ce217e0 c34cba5 798b3ec b72d974 5228f54 174cd37 b72d974 525f3d3 b72d974 525f3d3 488bc06 798b3ec a8d57ec 798b3ec bd20950 174cd37 a8d57ec 646bd9e 488bc06 2ad72ff 488bc06 2ad72ff 488bc06 b72d974 0b12fcc b72d974 bbc133a 525f3d3 dc83cd7 6eea781 bd20950 bbc133a 7cb14dd 174cd37 67fa189 7cb14dd 174cd37 7cb14dd ce217e0 174cd37 646bd9e d812385 174cd37 6eea781 7cb14dd 174cd37 646bd9e 174cd37 6eea781 174cd37 bd20950 174cd37 7cb14dd 174cd37 67fa189 ce217e0 67fa189 174cd37 0ca0215 67fa189 174cd37 bd20950 407a8d8 0ca0215 174cd37 72eca6b 0ca0215 72eca6b 363bb6a 174cd37 b160148 0ca0215 646bd9e 7cb14dd ce217e0 0ca0215 7cb14dd 0ca0215 7cb14dd 646bd9e 67fa189 ce217e0 67fa189 ce217e0 67fa189 646bd9e 174cd37 67fa189 ce217e0 646bd9e 407a8d8 e703f87 0a5d4c9 e703f87 d27b983 72eca6b 025fe8b 1238607 d27b983 1238607 d27b983 174cd37 646bd9e 2b591f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
"""A Gradio app for de-identifying text data using FHE."""
import base64
import os
import re
import subprocess
import time
import uuid
from typing import Dict, List
import gradio as gr
import numpy
import pandas as pd
import requests
from fhe_anonymizer import FHEAnonymizer
#from openai import OpenAI
from utils_demo import *
from concrete.ml.deployment import FHEModelClient
from models.speech_to_text import *
from models.speech_to_text.transcriber.audio import preprocess_audio
# Ensure the directory is clean before starting processes or reading files
clean_directory()
anonymizer = FHEAnonymizer()
#client = OpenAI(api_key=os.environ.get("openaikey"))
# Start the Uvicorn server hosting the FastAPI app
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
time.sleep(3)
# Load data from files required for the application
UUID_MAP = read_json(MAPPING_UUID_PATH)
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH)
MAPPING_ANONYMIZED_SENTENCES = read_pickle(MAPPING_ANONYMIZED_SENTENCES_PATH)
MAPPING_ENCRYPTED_SENTENCES = read_pickle(MAPPING_ENCRYPTED_SENTENCES_PATH)
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n")
MAPPING_DOC_EMBEDDING = read_pickle(MAPPING_DOC_EMBEDDING_PATH)
print(f"{ORIGINAL_DOCUMENT=}\n")
print(f"{MAPPING_DOC_EMBEDDING.keys()=}")
# 4. Data Processing and Operations (No specific operations shown here, assuming it's part of anonymizer or client usage)
# 5. Utilizing External Services or APIs
# (Assuming client initialization and anonymizer setup are parts of using external services or application-specific logic)
# Generate a random user ID for this session
USER_ID = numpy.random.randint(0, 2**32)
def select_static_anonymized_sentences_fn(selected_sentences: List):
selected_sentences = [MAPPING_ANONYMIZED_SENTENCES[sentence] for sentence in selected_sentences]
anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0])
anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence]
return "\n\n".join(anonymized_selected_sentence)
def key_gen_fn() -> Dict:
"""Generate keys for a given user."""
print("------------ Step 1: Key Generation:")
print(f"Your user ID is: {USER_ID}....")
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
client.load()
# Creates the private and evaluation keys on the client side
client.generate_private_and_evaluation_keys()
# Get the serialized evaluation keys
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_keys, bytes)
# Save the evaluation key
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
write_bytes(evaluation_key_path, serialized_evaluation_keys)
# anonymizer.generate_key()
if not evaluation_key_path.is_file():
error_message = (
f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
)
print(error_message)
return {gen_key_btn: gr.update(value=error_message)}
else:
print("Keys have been generated ✅")
return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
def encrypt_doc_fn(doc):
print(f"\n------------ Step 2.1: Doc encryption: {doc=}")
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
return {encrypted_doc_box: gr.update(value="Error ❌: Please generate the key first!", lines=10)}
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
client.load()
encrypted_tokens = []
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+|\$\d+(?:\.\d+)?|\€\d+(?:\.\d+)?)", ' '.join(doc))
for token in tokens:
if token.strip() and re.match(r"\w+", token):
emb_x = MAPPING_DOC_EMBEDDING[token]
assert emb_x.shape == (1, 1024)
encrypted_x = client.quantize_encrypt_serialize(emb_x)
assert isinstance(encrypted_x, bytes)
encrypted_tokens.append(encrypted_x)
print("Doc encrypted ✅ on Client Side")
# No need to save it
# write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_doc", b"".join(encrypted_tokens))
encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens]
return {
encrypted_doc_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=10),
anonymized_doc_output: gr.update(visible=True, value=None),
}
import presidio_analyzer
import presidio_anonymizer
from presidio_analyzer import AnalyzerEngine
from presidio_anonymizer import AnonymizerEngine
def anonymization_with_presidio(prompt):
analyzer = AnalyzerEngine()
anonymizer = AnonymizerEngine()
results = analyzer.analyze(text=prompt,language='en')
result = anonymizer.anonymize(text=prompt, analyzer_results=results)
return result.text
def encrypt_query_fn(query):
print(f"\n------------ Step 2: Query encryption: {query=}")
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
return {output_encrypted_box: gr.update(value="Error ❌: Please generate the key first!", lines=8)}
if is_user_query_valid(query):
return {
query_box: gr.update(
value=(
"Unable to process ❌: The request exceeds the length limit or falls "
"outside the scope of this document. Please refine your query."
)
)
}
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
client.load()
encrypted_tokens = []
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)
for token in tokens:
# 1- Ignore non-words tokens
if bool(re.match(r"^\s+$", token)):
continue
# 2- Directly append non-word tokens or whitespace to processed_tokens
# Prediction for each word
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
encrypted_x = client.quantize_encrypt_serialize(emb_x)
assert isinstance(encrypted_x, bytes)
encrypted_tokens.append(encrypted_x)
print("Data encrypted ✅ on Client Side")
assert len({len(token) for token in encrypted_tokens}) == 1
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input", b"".join(encrypted_tokens))
write_bytes(
KEYS_DIR / f"{USER_ID}/encrypted_input_len", len(encrypted_tokens[0]).to_bytes(10, "big")
)
encrypted_quant_tokens_hex = [token.hex()[500:580] for token in encrypted_tokens]
return {
output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=8),
anonymized_query_output: gr.update(visible=True, value=None),
identified_words_output_df: gr.update(visible=False, value=None),
}
def send_input_fn(query) -> Dict:
"""Send the encrypted data and the evaluation key to the server."""
print("------------ Step 3.1: Send encrypted_data to the Server")
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
encrypted_input_len_path = KEYS_DIR / f"{USER_ID}/encrypted_input_len"
if not evaluation_key_path.is_file():
error_message = (
"Error Encountered While Sending Data to the Server: "
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
)
return {anonymized_query_output: gr.update(value=error_message)}
if not encrypted_input_path.is_file():
error_message = (
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
f"correctly on the client side - {encrypted_input_path.is_file()=}"
)
return {anonymized_query_output: gr.update(value=error_message)}
# Define the data and files to post
data = {"user_id": USER_ID, "input": query}
files = [
("files", open(evaluation_key_path, "rb")),
("files", open(encrypted_input_path, "rb")),
("files", open(encrypted_input_len_path, "rb")),
]
# Send the encrypted input and evaluation key to the server
url = SERVER_URL + "send_input"
with requests.post(
url=url,
data=data,
files=files,
) as resp:
print("Data sent to the server ✅" if resp.ok else "Error ❌ in sending data to the server")
def run_fhe_in_server_fn() -> Dict:
"""Run in FHE the anonymization of the query"""
print("------------ Step 3.2: Run in FHE on the Server Side")
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
if not evaluation_key_path.is_file():
error_message = (
"Error Encountered While Sending Data to the Server: "
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
)
return {anonymized_query_output: gr.update(value=error_message)}
if not encrypted_input_path.is_file():
error_message = (
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
f"correctly on the client side - {encrypted_input_path.is_file()=}"
)
return {anonymized_query_output: gr.update(value=error_message)}
data = {
"user_id": USER_ID,
}
url = SERVER_URL + "run_fhe"
with requests.post(
url=url,
data=data,
) as response:
if not response.ok:
return {
anonymized_query_output: gr.update(
value=(
"⚠️ An error occurred on the Server Side. "
"Please check connectivity and data transmission."
),
),
}
else:
time.sleep(1)
print(f"The query anonymization was computed in {response.json():.2f} s per token.")
def get_output_fn() -> Dict:
print("------------ Step 3.3: Get the output from the Server Side")
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
error_message = (
"Error Encountered While Sending Data to the Server: "
"The key has not been generated correctly"
)
return {anonymized_query_output: gr.update(value=error_message)}
if not (KEYS_DIR / f"{USER_ID}/encrypted_input").is_file():
error_message = (
"Error Encountered While Sending Data to the Server: "
"The data has not been encrypted correctly on the client side"
)
return {anonymized_query_output: gr.update(value=error_message)}
data = {
"user_id": USER_ID,
}
# Retrieve the encrypted output
url = SERVER_URL + "get_output"
with requests.post(
url=url,
data=data,
) as response:
if response.ok:
print("Data received ✅ from the remote Server")
response_data = response.json()
encrypted_output_base64 = response_data["encrypted_output"]
length_encrypted_output_base64 = response_data["length"]
# Decode the base64 encoded data
encrypted_output = base64.b64decode(encrypted_output_base64)
length_encrypted_output = base64.b64decode(length_encrypted_output_base64)
# Save the encrypted output to bytes in a file as it is too large to pass through
# regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output", encrypted_output)
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len", length_encrypted_output)
else:
print("Error ❌ in getting data to the server")
def decrypt_fn(text) -> Dict:
"""Dencrypt the data on the `Client Side`."""
print("------------ Step 4: Dencrypt the data on the `Client Side`")
# Get the encrypted output path
encrypted_output_path = CLIENT_DIR / f"{USER_ID}_encrypted_output"
if not encrypted_output_path.is_file():
error_message = """⚠️ Please ensure that: \n
- the connectivity \n
- the query has been submitted \n
- the evaluation key has been generated \n
- the server processed the encrypted data \n
- the Client received the data from the Server before decrypting the prediction
"""
print(error_message)
return error_message, None
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
client.load()
# Load the encrypted output as bytes
encrypted_output = read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output")
length = int.from_bytes(read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len"), "big")
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", text)
decrypted_output, identified_words_with_prob = [], []
i = 0
for token in tokens:
# Directly append non-word tokens or whitespace to processed_tokens
if bool(re.match(r"^\s+$", token)):
continue
else:
encrypted_token = encrypted_output[i : i + length]
prediction_proba = client.deserialize_decrypt_dequantize(encrypted_token)
probability = prediction_proba[0][1]
i += length
if probability >= 0.77:
identified_words_with_prob.append((token, probability))
# Use the existing UUID if available, otherwise generate a new one
tmp_uuid = UUID_MAP.get(token, str(uuid.uuid4())[:8])
decrypted_output.append(tmp_uuid)
UUID_MAP[token] = tmp_uuid
else:
decrypted_output.append(token)
# Update the UUID map with query.
write_json(MAPPING_UUID_PATH, UUID_MAP)
# Removing Spaces Before Punctuation:
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", " ".join(decrypted_output))
# Convert the list of identified words and probabilities into a DataFrame
if identified_words_with_prob:
identified_df = pd.DataFrame(
identified_words_with_prob, columns=["Identified Words", "Probability"]
)
else:
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
print("Decryption done ✅ on Client Side")
return anonymized_text, identified_df
def anonymization_with_fn(selected_sentences, query):
encrypt_query_fn(query)
send_input_fn(query)
run_fhe_in_server_fn()
get_output_fn()
anonymized_text, identified_df = decrypt_fn(query)
return {
anonymized_doc_output: gr.update(value=select_static_anonymized_sentences_fn(selected_sentences)),
anonymized_query_output: gr.update(value=anonymized_text),
identified_words_output_df: gr.update(value=identified_df, visible=False),
}
# Define the folder path containing audio files
AUDIO_FOLDER_PATH = "./files/"
# Function to list available audio files in the folder
def get_audio_files():
files = [f for f in os.listdir(AUDIO_FOLDER_PATH) if f.endswith(('.wav', '.mp3'))]
return files
# Step 1: Load and display audio file
def load_audio_file(selected_audio):
file_path = os.path.join(AUDIO_FOLDER_PATH, selected_audio)
return file_path
# Step 1.1: Record and save the audio file
def save_recorded_audio(audio):
file_path = os.path.join(AUDIO_FOLDER_PATH, "recorded_audio.wav")
audio.export(file_path, format="wav") # Save the audio as a .wav file
return file_path
def click_js():
return """function audioRecord() {
var xPathRes = document.evaluate ('//*[@id="audio"]//button', document, null, XPathResult.FIRST_ORDERED_NODE_TYPE, null);
xPathRes.singleNodeValue.click();}"""
def action(btn):
"""Changes button text on click"""
if btn == 'Speak':
return 'Stop'
else:
return 'Speak'
def check_btn(btn):
"""Checks for correct button text before invoking transcribe()"""
if btn != 'Speak':
raise Exception('Recording...')
def transcribe():
return 'Success'
def transcribe_audio(audio_path):
# Prétraitement de l'audio
audio = preprocess_audio(audio_path)
# Chargement du modèle
model = load_model()
# Transcription
transcription = model.transcribe(audio)
return transcription
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")
with demo:
gr.Markdown(
"""
<p align="center">
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
</p>
""")
gr.Markdown(
"""
<h1 style="text-align: center;">Encrypted de-identification Audio Files Using Fully Homomorphic Encryption</h1>
<!-- <p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
—
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
—
<a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
—
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
</p> -->
"""
)
gr.Markdown(
"""
<p align="center" style="font-size: 16px;">
Anonymization makes it impossible to identify a person from a data set and thus allows their privacy to be respected </p> Concealing some of PII information is a helpful technique for de-identification. However, this can't be considered as anonymization.
<p align="center" style="font-size: 16px;">
De-identification uses Fully Homomorphic Encryption (FHE) to conceal personally
identifiable information (PII) within encrypted documents, enabling computations to be
performed on the encrypted data.</p>
"""
)
# Step 1: Add an audio file
gr.Markdown("## Step 1: Add an Audio File")
audio_files = get_audio_files()
with gr.Row():
audio_file_dropdown = gr.Dropdown(audio_files, label="Select an Audio File", interactive=True)
audio_output = gr.Audio(label="Selected Audio", type="filepath")
# When an audio file is selected, it will display the file path
audio_file_dropdown.change(fn=load_audio_file, inputs=[audio_file_dropdown], outputs=[audio_output])
with gr.Row():
transcribe_btn = gr.Button("Transcrire l'audio")
transcription_output = gr.Textbox(label="Transcription", lines=5)
transcribe_btn.click(
fn=transcribe_audio,
inputs=[audio_output],
outputs=[transcription_output]
)
########################## Step 1.1: Record Audio ##########################
gr.Markdown("## Step 1.1: Record an Audio File")
"""
with gr.Row():
audio_recorder = gr.Audio(source="microphone", type="file", label="Record Audio")
record_output = gr.Audio(label="Recorded Audio", type="filepath")
# When the user records an audio, save it
audio_recorder.change(fn=save_recorded_audio, inputs=[audio_recorder], outputs=[record_output])
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
gen_key_btn.click(
key_gen_fn,
inputs=[],
outputs=[gen_key_btn],
) """
msg = gr.Textbox()
audio_box = gr.Audio(label="Audio", type="filepath", elem_id='audio')
with gr.Row():
audio_btn = gr.Button('Speak')
clear = gr.Button("Clear")
audio_btn.click(fn=action, inputs=audio_btn, outputs=audio_btn) \
.then(fn=check_btn, inputs=audio_btn) \
.success(fn=transcribe, outputs=msg)
clear.click(lambda: None, None, msg, queue=False)
########################## Transcription ##########################
with gr.Row():
transcribe_btn = gr.Button("Transcrire l'audio")
transcription_output = gr.Textbox(label="Transcription", lines=5)
transcribe_btn.click(
fn=transcribe_audio,
inputs=[audio_output],
outputs=[transcription_output]
)
########################## Key Gen Part ##########################
gr.Markdown(
"## Step 1.2: Generate the keys\n\n"
"""In Fully Homomorphic Encryption (FHE) methods, two types of keys are created. The first
type, called secret keys, are used to encrypt and decrypt the user's data. The second type,
called evaluation keys, enables a server to work on the encrypted data without seeing the
actual data.
"""
)
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
gen_key_btn.click(
key_gen_fn,
inputs=[],
outputs=[gen_key_btn],
)
########################## Main document Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 2.1: Select the document you want to encrypt\n\n"
"""To make it simple, we pre-compiled the following document, but you are free to choose
on which part you want to run this example.
"""
)
with gr.Row():
with gr.Column(scale=5):
original_sentences_box = gr.CheckboxGroup(
ORIGINAL_DOCUMENT,
value=ORIGINAL_DOCUMENT,
label="Contract:",
show_label=True,
)
with gr.Column(scale=1, min_width=6):
gr.HTML("<div style='height: 77px;'></div>")
encrypt_doc_btn = gr.Button("Encrypt the document")
with gr.Column(scale=5):
encrypted_doc_box = gr.Textbox(
label="Encrypted document:", show_label=True, interactive=False, lines=10
)
########################## User Query Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 2.2: Select the prompt you want to encrypt\n\n"
"""Please choose from the predefined options in
<span style='color:grey'>“Prompt examples”</span> or craft a custom question in
the <span style='color:grey'>“Customized prompt”</span> text box.
Remain concise and relevant to the context. Any off-topic query will not be processed.""")
with gr.Row():
with gr.Column(scale=5):
with gr.Column(scale=5):
default_query_box = gr.Dropdown(
list(DEFAULT_QUERIES.values()), label="PROMPT EXAMPLES:"
)
gr.Markdown("Or")
query_box = gr.Textbox(
value="What is Kate international bank account number?", label="CUSTOMIZED PROMPT:", interactive=True
)
default_query_box.change(
fn=lambda default_query_box: default_query_box,
inputs=[default_query_box],
outputs=[query_box],
)
with gr.Column(scale=1, min_width=6):
gr.HTML("<div style='height: 77px;'></div>")
encrypt_query_btn = gr.Button("Encrypt the prompt")
# gr.HTML("<div style='height: 50px;'></div>")
with gr.Column(scale=5):
output_encrypted_box = gr.Textbox(
label="Encrypted de-identified query that will be sent to the de-identification server:",
lines=8,
)
########################## FHE processing Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 3: De-identify the document and the prompt using FHE")
gr.Markdown(
"""Once the client encrypts the document and the prompt locally, it will be sent to a remote
server to perform the de-identification on encrypted data. When the computation is done, the
server will return the result to the client for decryption."""
)
run_fhe_btn = gr.Button("De-identify using FHE")
with gr.Row():
with gr.Column(scale=5):
anonymized_doc_output = gr.Textbox(
label="Decrypted and de-idenntified document", lines=10, interactive=True
)
with gr.Column(scale=5):
anonymized_query_output = gr.Textbox(
label="Decrypted and de-identified prompt", lines=10, interactive=True
)
identified_words_output_df = gr.Dataframe(label="Identified words:", visible=False)
encrypt_doc_btn.click(
fn=encrypt_doc_fn,
inputs=[original_sentences_box],
outputs=[encrypted_doc_box, anonymized_doc_output],
)
encrypt_query_btn.click(
fn=encrypt_query_fn,
inputs=[query_box],
outputs=[
query_box,
output_encrypted_box,
anonymized_query_output,
identified_words_output_df,
],
)
run_fhe_btn.click(
anonymization_with_fn,
inputs=[original_sentences_box, query_box],
outputs=[anonymized_doc_output, anonymized_query_output, identified_words_output_df],
)
########################## Presidio ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 3: De-identify the document and the prompt")
gr.Markdown(
"""This step will demonstrate de-identification using both FHE and Presidio methods.
The same prompt will be used for both to allow for direct comparison.""")
with gr.Row():
run_presidio_btn = gr.Button("De-identify using Presidio")
with gr.Row():
presidio_output = gr.Textbox(
label="Presidio: De-identified prompt", lines=10, interactive=True
)
run_presidio_btn.click(
anonymization_with_presidio,
inputs=[query_box],
outputs=[presidio_output],
)
# Launch the app
demo.launch(share=False)
|