File size: 25,135 Bytes
646bd9e
 
67fa189
174cd37
 
67fa189
 
 
174cd37
67fa189
646bd9e
67fa189
646bd9e
67fa189
174cd37
df6182e
d812385
67fa189
1a494e6
174cd37
cf6aebf
67fa189
 
174cd37
67fa189
 
 
 
cf6aebf
 
 
67fa189
 
 
7cb14dd
 
67fa189
ce217e0
c10f4f8
 
 
67fa189
 
646bd9e
67fa189
 
646bd9e
67fa189
 
df6182e
646bd9e
7cb14dd
174cd37
7cb14dd
174cd37
 
 
 
 
ce217e0
174cd37
 
 
67fa189
 
 
174cd37
67fa189
174cd37
67fa189
 
1a494e6
 
 
 
 
 
 
 
 
 
67fa189
 
 
1a494e6
 
174cd37
 
 
 
 
 
 
d812385
67fa189
174cd37
 
7cb14dd
ce217e0
7cb14dd
ce217e0
7cb14dd
ce217e0
 
 
 
 
 
7cb14dd
ce217e0
84bd8b7
 
ce217e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174cd37
 
 
67fa189
174cd37
67fa189
ce217e0
174cd37
 
67fa189
 
 
 
 
 
 
 
174cd37
cf6aebf
67fa189
cf6aebf
 
67fa189
 
cf6aebf
 
 
 
67fa189
 
cf6aebf
 
67fa189
 
cf6aebf
 
 
 
 
 
 
 
dc83cd7
67fa189
 
cf6aebf
67fa189
 
 
 
174cd37
7cb14dd
174cd37
67fa189
ce217e0
 
67fa189
 
174cd37
 
67fa189
 
174cd37
67fa189
 
 
 
 
174cd37
 
67fa189
 
 
 
ce217e0
174cd37
67fa189
 
 
 
 
ce217e0
174cd37
67fa189
 
174cd37
67fa189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd20950
67fa189
 
 
 
 
 
 
 
 
 
ce217e0
67fa189
 
 
 
 
 
ce217e0
67fa189
 
 
 
 
 
 
 
 
 
 
 
 
ce217e0
67fa189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce217e0
67fa189
 
 
 
 
 
ce217e0
67fa189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b591f4
 
 
 
 
 
646bd9e
2b591f4
67fa189
dc83cd7
67fa189
646bd9e
 
 
ce217e0
67fa189
 
 
 
 
 
 
 
 
 
 
 
ce217e0
 
 
67fa189
 
 
174cd37
 
dc83cd7
 
 
174cd37
dc83cd7
df6182e
dc83cd7
174cd37
dc83cd7
174cd37
ce217e0
df6182e
 
174cd37
 
 
 
 
 
 
df6182e
ce217e0
df6182e
 
 
 
ce217e0
df6182e
 
 
 
174cd37
 
 
 
 
df6182e
 
174cd37
df6182e
 
 
 
 
 
 
628fe8f
df6182e
 
 
 
 
dc83cd7
 
 
df6182e
 
b160148
646bd9e
 
b160148
646bd9e
 
 
630144b
646bd9e
630144b
 
 
 
646bd9e
 
 
 
 
 
174cd37
646bd9e
 
 
 
 
 
ce217e0
 
 
 
 
 
 
 
 
 
 
 
 
88b8536
ce217e0
 
 
 
525f3d3
ce217e0
 
 
 
 
 
174cd37
 
 
 
6eea781
 
 
88b8536
6eea781
bd20950
525f3d3
 
bd20950
174cd37
 
 
 
 
 
646bd9e
bbc133a
525f3d3
dc83cd7
6eea781
 
 
 
 
bd20950
bbc133a
7cb14dd
174cd37
67fa189
 
7cb14dd
 
174cd37
 
7cb14dd
 
 
 
 
ce217e0
 
174cd37
 
646bd9e
d812385
174cd37
 
6eea781
 
7cb14dd
 
 
174cd37
646bd9e
174cd37
 
 
 
6eea781
174cd37
 
bd20950
 
174cd37
7cb14dd
174cd37
 
 
 
 
 
 
 
 
67fa189
ce217e0
67fa189
174cd37
 
 
67fa189
 
174cd37
 
bd20950
 
174cd37
6eea781
174cd37
6eea781
 
 
174cd37
 
b160148
6eea781
646bd9e
7cb14dd
 
 
ce217e0
 
7cb14dd
 
 
 
 
ce217e0
7cb14dd
 
646bd9e
67fa189
 
ce217e0
 
 
 
 
 
 
67fa189
 
 
 
 
ce217e0
67fa189
 
 
646bd9e
174cd37
67fa189
ce217e0
 
646bd9e
 
bd20950
174cd37
bd20950
7cb14dd
174cd37
 
bd20950
174cd37
df6182e
 
174cd37
 
7cb14dd
174cd37
7cb14dd
174cd37
 
df6182e
174cd37
ce217e0
df6182e
 
646bd9e
174cd37
bd20950
 
174cd37
 
646bd9e
2b591f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
"""A Gradio app for anonymizing text data using FHE."""

import base64
import os
import re
import subprocess
import time
import uuid
from typing import Dict, List

import gradio as gr
import numpy
import pandas as pd
import requests
from fhe_anonymizer import FHEAnonymizer
from openai import OpenAI
from utils_demo import *

from concrete.ml.deployment import FHEModelClient


# Ensure the directory is clean before starting processes or reading files
clean_directory()  

anonymizer = FHEAnonymizer()
client = OpenAI(api_key=os.environ.get("openaikey"))

# Start the Uvicorn server hosting the FastAPI app
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
time.sleep(3)

# Load data from files required for the application
UUID_MAP = read_json(MAPPING_UUID_PATH)
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH)
MAPPING_ANONYMIZED_SENTENCES = read_pickle(MAPPING_ANONYMIZED_SENTENCES_PATH)
MAPPING_ENCRYPTED_SENTENCES = read_pickle(MAPPING_ENCRYPTED_SENTENCES_PATH)
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n")
MAPPING_DOC_EMBEDDING = read_pickle(MAPPING_DOC_EMBEDDING_PATH)

print(f"{ORIGINAL_DOCUMENT=}\n")
print(f"{MAPPING_DOC_EMBEDDING.keys()=}")

# 4. Data Processing and Operations (No specific operations shown here, assuming it's part of anonymizer or client usage)

# 5. Utilizing External Services or APIs
# (Assuming client initialization and anonymizer setup are parts of using external services or application-specific logic)

# Generate a random user ID for this session
USER_ID = numpy.random.randint(0, 2**32)


def select_static_anonymized_sentences_fn(selected_sentences: List):

    selected_sentences = [MAPPING_ANONYMIZED_SENTENCES[sentence] for sentence in selected_sentences]

    anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0])

    anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence]

    return "\n\n".join(anonymized_selected_sentence)


def key_gen_fn() -> Dict:
    """Generate keys for a given user."""

    print("------------ Step 1: Key Generation:")

    print(f"Your user ID is: {USER_ID}....")


    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
    client.load()

    # Creates the private and evaluation keys on the client side
    client.generate_private_and_evaluation_keys()

    # Get the serialized evaluation keys
    serialized_evaluation_keys = client.get_serialized_evaluation_keys()
    assert isinstance(serialized_evaluation_keys, bytes)

    # Save the evaluation key
    evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"

    write_bytes(evaluation_key_path, serialized_evaluation_keys)

    # anonymizer.generate_key()

    if not evaluation_key_path.is_file():
        error_message = (
            f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
        )
        print(error_message)
        return {gen_key_btn: gr.update(value=error_message)}
    else:
        print("Keys have been generated ✅")
        return {gen_key_btn: gr.update(value="Keys have been generated ✅")}


def encrypt_doc_fn(doc):

    print(f"\n------------ Step 2.1: Doc encryption: {doc=}")

    if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
        return {encrypted_doc_box: gr.update(value="Error ❌: Please generate the key first!", lines=10)}

    # Retrieve the client API
    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
    client.load()

    encrypted_tokens = []
    tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+|\$\d+(?:\.\d+)?|\€\d+(?:\.\d+)?)", ' '.join(doc))
    
    for token in tokens:
        if token.strip() and re.match(r"\w+", token):
            emb_x = MAPPING_DOC_EMBEDDING[token]
            assert emb_x.shape == (1, 1024)
            encrypted_x = client.quantize_encrypt_serialize(emb_x)
            assert isinstance(encrypted_x, bytes)
            encrypted_tokens.append(encrypted_x)

    print("Doc encrypted ✅ on Client Side")

    # No need to save it
    # write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_doc", b"".join(encrypted_tokens))

    encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens]

    return {
        encrypted_doc_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=10),
        anonymized_doc_output: gr.update(visible=True, value=None),
    }
    

def encrypt_query_fn(query):

    print(f"\n------------ Step 2: Query encryption: {query=}")

    if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
        return {output_encrypted_box: gr.update(value="Error ❌: Please generate the key first!", lines=8)}

    if is_user_query_valid(query):
        return {
            query_box: gr.update(
                value=(
                    "Unable to process ❌: The request exceeds the length limit or falls "
                    "outside the scope of this document. Please refine your query."
                )
            )
        }

    # Retrieve the client API
    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
    client.load()

    encrypted_tokens = []

    # Pattern to identify words and non-words (including punctuation, spaces, etc.)
    tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)

    for token in tokens:

        # 1- Ignore non-words tokens
        if bool(re.match(r"^\s+$", token)):
            continue

        # 2- Directly append non-word tokens or whitespace to processed_tokens

        # Prediction for each word
        emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
        encrypted_x = client.quantize_encrypt_serialize(emb_x)
        assert isinstance(encrypted_x, bytes)

        encrypted_tokens.append(encrypted_x)

    print("Data encrypted ✅ on Client Side")

    assert len({len(token) for token in encrypted_tokens}) == 1

    write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input", b"".join(encrypted_tokens))
    write_bytes(
        KEYS_DIR / f"{USER_ID}/encrypted_input_len", len(encrypted_tokens[0]).to_bytes(10, "big")
    )

    encrypted_quant_tokens_hex = [token.hex()[500:580] for token in encrypted_tokens]

    return {
        output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=8),
        anonymized_query_output: gr.update(visible=True, value=None),
        identified_words_output_df: gr.update(visible=False, value=None),
    }


def send_input_fn(query) -> Dict:
    """Send the encrypted data and the evaluation key to the server."""

    print("------------ Step 3.1: Send encrypted_data to the Server")

    evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
    encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
    encrypted_input_len_path = KEYS_DIR / f"{USER_ID}/encrypted_input_len"

    if not evaluation_key_path.is_file():
        error_message = (
            "Error Encountered While Sending Data to the Server: "
            f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
        )
        return {anonymized_query_output: gr.update(value=error_message)}

    if not encrypted_input_path.is_file():
        error_message = (
            "Error Encountered While Sending Data to the Server: The data has not been encrypted "
            f"correctly on the client side - {encrypted_input_path.is_file()=}"
        )
        return {anonymized_query_output: gr.update(value=error_message)}

    # Define the data and files to post
    data = {"user_id": USER_ID, "input": query}

    files = [
        ("files", open(evaluation_key_path, "rb")),
        ("files", open(encrypted_input_path, "rb")),
        ("files", open(encrypted_input_len_path, "rb")),
    ]

    # Send the encrypted input and evaluation key to the server
    url = SERVER_URL + "send_input"

    with requests.post(
        url=url,
        data=data,
        files=files,
    ) as resp:
        print("Data sent to the server ✅" if resp.ok else "Error ❌ in sending data to the server")


def run_fhe_in_server_fn() -> Dict:
    """Run in FHE the anonymization of the query"""

    print("------------ Step 3.2: Run in FHE on the Server Side")

    evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
    encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"

    if not evaluation_key_path.is_file():
        error_message = (
            "Error Encountered While Sending Data to the Server: "
            f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
        )
        return {anonymized_query_output: gr.update(value=error_message)}

    if not encrypted_input_path.is_file():
        error_message = (
            "Error Encountered While Sending Data to the Server: The data has not been encrypted "
            f"correctly on the client side - {encrypted_input_path.is_file()=}"
        )
        return {anonymized_query_output: gr.update(value=error_message)}

    data = {
        "user_id": USER_ID,
    }

    url = SERVER_URL + "run_fhe"

    with requests.post(
        url=url,
        data=data,
    ) as response:
        if not response.ok:
            return {
                anonymized_query_output: gr.update(
                    value=(
                        "⚠️ An error occurred on the Server Side. "
                        "Please check connectivity and data transmission."
                    ),
                ),
            }
        else:
            time.sleep(1)
            print(f"The query anonymization was computed in {response.json():.2f} s per token.")


def get_output_fn() -> Dict:

    print("------------ Step 3.3: Get the output from the Server Side")

    if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
        error_message = (
            "Error Encountered While Sending Data to the Server: "
            "The key has not been generated correctly"
        )
        return {anonymized_query_output: gr.update(value=error_message)}

    if not (KEYS_DIR / f"{USER_ID}/encrypted_input").is_file():
        error_message = (
            "Error Encountered While Sending Data to the Server: "
            "The data has not been encrypted correctly on the client side"
        )
        return {anonymized_query_output: gr.update(value=error_message)}

    data = {
        "user_id": USER_ID,
    }

    # Retrieve the encrypted output
    url = SERVER_URL + "get_output"
    with requests.post(
        url=url,
        data=data,
    ) as response:
        if response.ok:
            print("Data received ✅ from the remote Server")
            response_data = response.json()
            encrypted_output_base64 = response_data["encrypted_output"]
            length_encrypted_output_base64 = response_data["length"]

            # Decode the base64 encoded data
            encrypted_output = base64.b64decode(encrypted_output_base64)
            length_encrypted_output = base64.b64decode(length_encrypted_output_base64)

            # Save the encrypted output to bytes in a file as it is too large to pass through
            # regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)

            write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output", encrypted_output)
            write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len", length_encrypted_output)

        else:
            print("Error ❌ in getting data to the server")


def decrypt_fn(text) -> Dict:
    """Dencrypt the data on the `Client Side`."""

    print("------------ Step 4: Dencrypt the data on the `Client Side`")

    # Get the encrypted output path
    encrypted_output_path = CLIENT_DIR / f"{USER_ID}_encrypted_output"

    if not encrypted_output_path.is_file():
        error_message = """⚠️ Please ensure that: \n
                - the connectivity \n
                - the query has been submitted \n
                - the evaluation key has been generated \n
                - the server processed the encrypted data \n
                - the Client received the data from the Server before decrypting the prediction
                """
        print(error_message)

        return error_message, None

    # Retrieve the client API
    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
    client.load()

    # Load the encrypted output as bytes
    encrypted_output = read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output")
    length = int.from_bytes(read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len"), "big")

    tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", text)

    decrypted_output, identified_words_with_prob = [], []

    i = 0
    for token in tokens:

        # Directly append non-word tokens or whitespace to processed_tokens
        if bool(re.match(r"^\s+$", token)):
            continue
        else:
            encrypted_token = encrypted_output[i : i + length]
            prediction_proba = client.deserialize_decrypt_dequantize(encrypted_token)
            probability = prediction_proba[0][1]
            i += length

            if probability >= 0.77:
                identified_words_with_prob.append((token, probability))

                # Use the existing UUID if available, otherwise generate a new one
                tmp_uuid = UUID_MAP.get(token, str(uuid.uuid4())[:8])
                decrypted_output.append(tmp_uuid)
                UUID_MAP[token] = tmp_uuid
            else:
                decrypted_output.append(token)

        # Update the UUID map with query.
        write_json(MAPPING_UUID_PATH, UUID_MAP)

    # Removing Spaces Before Punctuation:
    anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", " ".join(decrypted_output))

    # Convert the list of identified words and probabilities into a DataFrame
    if identified_words_with_prob:
        identified_df = pd.DataFrame(
            identified_words_with_prob, columns=["Identified Words", "Probability"]
        )
    else:
        identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])

    print("Decryption done ✅ on Client Side")

    return anonymized_text, identified_df


def anonymization_with_fn(selected_sentences, query):

    encrypt_query_fn(query)

    send_input_fn(query)

    run_fhe_in_server_fn()

    get_output_fn()

    anonymized_text, identified_df = decrypt_fn(query)

    return {
        anonymized_doc_output: gr.update(value=select_static_anonymized_sentences_fn(selected_sentences)),
        anonymized_query_output: gr.update(value=anonymized_text),
        identified_words_output_df: gr.update(value=identified_df, visible=False),
    }


def query_chatgpt_fn(anonymized_query, anonymized_document):

    print("------------ Step 5: ChatGPT communication")

    if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
        error_message = "Error ❌: Please generate the key first!"
        return {chatgpt_response_anonymized: gr.update(value=error_message)}

    if not (CLIENT_DIR / f"{USER_ID}_encrypted_output").is_file():
        error_message = "Error ❌: Please encrypt your query first!"
        return {chatgpt_response_anonymized: gr.update(value=error_message)}

    context_prompt = read_txt(PROMPT_PATH)

    # Prepare prompt
    query = (
        "Document content:\n```\n"
        + anonymized_document
        + "\n\n```"
        + "Query:\n```\n"
        + anonymized_query
        + "\n```"
    )
    print(f'Prompt of CHATGPT:\n{query}')

    completion = client.chat.completions.create(
        model="gpt-4-1106-preview",  # Replace with "gpt-4" if available
        messages=[
            {"role": "system", "content": context_prompt},
            {"role": "user", "content": query},
        ],
    )
    anonymized_response = completion.choices[0].message.content
    uuid_map = read_json(MAPPING_UUID_PATH)

    inverse_uuid_map = {
        v: k for k, v in uuid_map.items()
    }  # TODO load the inverse mapping from disk for efficiency

    # Pattern to identify words and non-words (including punctuation, spaces, etc.)
    tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", anonymized_response)
    processed_tokens = []

    for token in tokens:
        # Directly append non-word tokens or whitespace to processed_tokens
        if not token.strip() or not re.match(r"\w+", token):
            processed_tokens.append(token)
            continue

        if token in inverse_uuid_map:
            processed_tokens.append(inverse_uuid_map[token])
        else:
            processed_tokens.append(token)
    deanonymized_response = "".join(processed_tokens)

    return {chatgpt_response_anonymized: gr.update(value=anonymized_response), 
            chatgpt_response_deanonymized: gr.update(value=deanonymized_response)}


demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")

with demo:

    gr.Markdown(
        """
        <p align="center">
            <img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
        </p>
        """)
        
    gr.Markdown(
        """
        <h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1>
        <p align="center">
            <a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>

            <a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>

            <a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>

            <a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
        </p>
        """
    )

    gr.Markdown(
    """
    <p align="center" style="font-size: 16px;">
        Anonymization is the process of removing personally identifiable information (PII) data from 
        a document in order to protect individual privacy.</p>

    <p align="center" style="font-size: 16px;">
        Encrypted anonymization uses Fully Homomorphic Encryption (FHE) to anonymize personally 
        identifiable information (PII) within encrypted documents, enabling computations to be 
        performed on the encrypted data.</p>

    <p align="center" style="font-size: 16px;">
        In the example above, we're showing how encrypted anonymization can be leveraged to use LLM 
        services such as ChatGPT in a privacy-preserving manner.</p>
    """
    )    
    
    gr.Markdown(
        """
        <p align="center">
            <img width="75%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/fhe_anonymization_banner.png">
        </p>
        """
    )


    ########################## Key Gen Part ##########################

    gr.Markdown(
        "## Step 1: Generate the keys\n\n"
        """In Fully Homomorphic Encryption (FHE) methods, two types of keys are created. The first 
        type, called secret keys, are used to encrypt and decrypt the user's data. The second type, 
        called evaluation keys, enables a server to work on the encrypted data without seeing the 
        actual data.
        """
    )

    gen_key_btn = gr.Button("Generate the secret and evaluation keys")

    gen_key_btn.click(
        key_gen_fn,
        inputs=[],
        outputs=[gen_key_btn],
    )

    ########################## Main document Part ##########################

    gr.Markdown("<hr />")
    gr.Markdown("## Step 2.1: Select the document you want to encrypt\n\n"
        """To make it simple, we pre-compiled the following document, but you are free to choose 
        on which part you want to run this example.
        """
    )

    with gr.Row():
        with gr.Column(scale=5):
            original_sentences_box = gr.CheckboxGroup(
                ORIGINAL_DOCUMENT,
                value=ORIGINAL_DOCUMENT,
                label="Contract:",
                show_label=True,
            )

        with gr.Column(scale=1, min_width=6):
            gr.HTML("<div style='height: 77px;'></div>")
            encrypt_doc_btn = gr.Button("Encrypt the document")

        with gr.Column(scale=5):
            encrypted_doc_box = gr.Textbox(
                label="Encrypted document:", show_label=True, interactive=False, lines=10
            )


    ########################## User Query Part ##########################

    gr.Markdown("<hr />")
    gr.Markdown("## Step 2.2: Select the prompt you want to encrypt\n\n"
        """Please choose from the predefined options in 
        <span style='color:grey'>“Prompt examples”</span> or craft a custom question in 
        the <span style='color:grey'>“Customized prompt”</span> text box.        
        Remain concise and relevant to the context. Any off-topic query will not be processed.""")

    with gr.Row():
        with gr.Column(scale=5):

            with gr.Column(scale=5):
                default_query_box = gr.Dropdown(
                    list(DEFAULT_QUERIES.values()), label="PROMPT EXAMPLES:"
                )

            gr.Markdown("Or")

            query_box = gr.Textbox(
                value="What is Kate international bank account number?", label="CUSTOMIZED PROMPT:", interactive=True
            )

            default_query_box.change(
                fn=lambda default_query_box: default_query_box,
                inputs=[default_query_box],
                outputs=[query_box],
            )

        with gr.Column(scale=1, min_width=6):
            gr.HTML("<div style='height: 77px;'></div>")
            encrypt_query_btn = gr.Button("Encrypt the prompt")
            # gr.HTML("<div style='height: 50px;'></div>")

        with gr.Column(scale=5):
            output_encrypted_box = gr.Textbox(
                label="Encrypted anonymized query that will be sent to the anonymization server:",
                lines=8,
            )

    ########################## FHE processing Part ##########################

    gr.Markdown("<hr />")
    gr.Markdown("## Step 3: Anonymize the document and the prompt using FHE")
    gr.Markdown(
        """Once the client encrypts the document and the prompt locally, it will be sent to a remote 
        server to perform the anonymization on encrypted data. When the computation is done, the 
        server will return the result to the client for decryption.
        """
    )

    run_fhe_btn = gr.Button("Anonymize using FHE")

    with gr.Row():
        with gr.Column(scale=5):

            anonymized_doc_output = gr.Textbox(
                label="Decrypted and anonymized document", lines=10, interactive=True
            )

        with gr.Column(scale=5):

            anonymized_query_output = gr.Textbox(
                label="Decrypted and anonymized prompt", lines=10, interactive=True
            )


    identified_words_output_df = gr.Dataframe(label="Identified words:", visible=False)

    encrypt_doc_btn.click(
        fn=encrypt_doc_fn,
        inputs=[original_sentences_box],
        outputs=[encrypted_doc_box, anonymized_doc_output],
    )

    encrypt_query_btn.click(
        fn=encrypt_query_fn,
        inputs=[query_box],
        outputs=[
            query_box,
            output_encrypted_box,
            anonymized_query_output,
            identified_words_output_df,
        ],
    )

    run_fhe_btn.click(
        anonymization_with_fn,
        inputs=[original_sentences_box, query_box],
        outputs=[anonymized_doc_output, anonymized_query_output, identified_words_output_df],
    )

    ########################## ChatGpt Part ##########################

    gr.Markdown("<hr />")
    gr.Markdown("## Step 4: Send anonymized prompt to ChatGPT")
    gr.Markdown(
        """After securely anonymizing the query with FHE, 
        you can forward it to ChatGPT without having any concern about information leakage."""
    )

    chatgpt_button = gr.Button("Query ChatGPT")

    with gr.Row():
        chatgpt_response_anonymized = gr.Textbox(label="ChatGPT's anonymized response:", lines=5)
        chatgpt_response_deanonymized = gr.Textbox(
            label="ChatGPT's non-anonymized response:", lines=5
        )

    chatgpt_button.click(
        query_chatgpt_fn,
        inputs=[anonymized_query_output, anonymized_doc_output],
        outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized],
    )

    gr.Markdown(
        """**Please note**: As this space is intended solely for demonstration purposes, some 
        private information may be missed during by the anonymization algorithm. Please validate the 
        following query before sending it to ChatGPT."""
    )
# Launch the app
demo.launch(share=False)