File size: 25,784 Bytes
0908a41
 
21c7197
fa707a9
21c7197
 
fa707a9
21c7197
fa707a9
 
 
 
 
5369c66
fa707a9
 
 
 
 
 
 
 
 
 
 
5369c66
21c7197
 
fa707a9
 
21c7197
fa707a9
21c7197
fa707a9
21c7197
 
fa707a9
 
 
21c7197
 
 
 
 
 
58ec1fc
 
 
 
d07e70b
58ec1fc
 
 
d07e70b
58ec1fc
 
d07e70b
58ec1fc
 
 
 
 
 
 
 
5369c66
58ec1fc
 
 
 
 
5369c66
58ec1fc
d07e70b
 
21c7197
 
 
 
 
 
 
 
 
 
 
0908a41
21c7197
 
 
 
 
 
 
fa707a9
21c7197
 
 
 
fa707a9
21c7197
 
7b32412
21c7197
fa707a9
21c7197
 
fa707a9
21c7197
 
 
 
 
fa707a9
21c7197
 
 
 
fa707a9
21c7197
 
 
 
 
0908a41
5369c66
21c7197
 
5369c66
21c7197
 
5369c66
 
21c7197
 
 
5369c66
 
 
 
 
21c7197
 
fa707a9
 
21c7197
5369c66
 
21c7197
5369c66
21c7197
 
 
0908a41
 
21c7197
 
0908a41
21c7197
 
 
 
 
 
 
 
 
fa707a9
 
21c7197
 
fa707a9
21c7197
 
 
 
 
 
 
 
 
 
 
fa707a9
21c7197
 
 
 
2eb250a
21c7197
 
fa707a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c7197
 
 
fa707a9
 
21c7197
 
 
 
 
 
 
 
 
fa707a9
 
 
0908a41
fa707a9
 
 
 
0908a41
fa707a9
0908a41
fa707a9
 
d07e70b
fa707a9
 
 
 
 
21c7197
fa707a9
21c7197
7b32412
fa707a9
21c7197
 
 
fa707a9
21c7197
fa707a9
21c7197
 
 
 
 
fa707a9
 
 
 
 
21c7197
 
fa707a9
 
21c7197
 
 
fa707a9
21c7197
 
fa707a9
21c7197
 
 
 
fa707a9
21c7197
fa707a9
 
 
 
21c7197
 
 
 
 
 
 
fa707a9
21c7197
 
 
 
 
 
 
 
 
 
 
 
 
fa707a9
 
21c7197
 
 
fa707a9
21c7197
 
 
 
 
 
 
 
 
 
 
 
 
 
fa707a9
21c7197
 
fa707a9
 
21c7197
 
 
fa707a9
21c7197
 
fa707a9
21c7197
 
 
 
 
 
 
 
 
 
 
 
 
d07e70b
 
21c7197
 
fa707a9
21c7197
 
d07e70b
21c7197
fa707a9
 
 
 
21c7197
fa707a9
 
 
 
 
 
 
 
 
 
bf8c653
21c7197
 
 
 
fa707a9
21c7197
 
 
 
fa707a9
21c7197
 
fa707a9
21c7197
 
 
 
 
 
 
fa707a9
21c7197
 
 
 
 
 
0908a41
21c7197
 
fa707a9
21c7197
 
fa707a9
21c7197
bf8c653
fa707a9
0908a41
fa707a9
 
 
bf8c653
 
 
9fdead5
fa707a9
 
bf8c653
 
 
fa707a9
 
21c7197
0908a41
21c7197
 
 
 
 
 
 
0908a41
f9f9bfd
0908a41
fa707a9
21c7197
fa707a9
f9f9bfd
 
 
 
 
 
 
 
0908a41
b3b800b
0908a41
21c7197
 
 
 
0908a41
fa707a9
 
 
 
 
0908a41
21c7197
0908a41
 
 
 
 
a27c692
0908a41
21c7197
 
fa707a9
 
0908a41
 
 
 
 
 
 
 
 
 
 
a27c692
0908a41
21c7197
 
fa707a9
 
0908a41
 
 
 
9db6de2
fa707a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0908a41
502bbf4
b08dbdd
21c7197
b08dbdd
21c7197
 
d07e70b
fa707a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0908a41
b08dbdd
fa707a9
 
0908a41
 
d07e70b
21c7197
 
 
0908a41
21c7197
 
 
 
0908a41
 
 
21c7197
502bbf4
b08dbdd
 
 
 
21c7197
0908a41
d07e70b
0908a41
d07e70b
0908a41
 
 
 
d07e70b
21c7197
b08dbdd
58ec1fc
 
 
 
 
 
0908a41
 
 
 
 
 
d07e70b
21c7197
 
502bbf4
0908a41
21c7197
 
502bbf4
d07e70b
0908a41
d07e70b
0908a41
d07e70b
21c7197
 
 
0908a41
 
fa707a9
21c7197
14c30ad
0908a41
21c7197
0908a41
 
fa707a9
14c30ad
 
 
21c7197
0908a41
 
 
 
 
 
 
21c7197
 
 
 
fa707a9
2eb250a
21c7197
 
0908a41
fa707a9
0908a41
fa707a9
 
21c7197
 
 
fa707a9
21c7197
 
fa707a9
21c7197
 
 
0908a41
fa707a9
0908a41
21c7197
 
 
 
 
fa707a9
 
 
21c7197
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
"""A local gradio app that detect matching images using FHE."""

import os
from pathlib import Path
import shutil
import time
from typing import Tuple
import requests

import numpy as np

import subprocess
import gradio as gr
from itertools import chain
import matplotlib.pyplot as plt
import matplotlib.image as img
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
import torchvision.models as models
import cv2
from facenet_pytorch import InceptionResnetV1
from concrete.ml.deployment import FHEModelClient, FHEModelServer
from client_server_interface import FHEClient

from common import (
    CLIENT_TMP_PATH,
    ID_EXAMPLES,
    SELFIE_EXAMPLES,
    KEYS_PATH,
    MATCHERS_PATH,
    REPO_DIR,
    SERVER_TMP_PATH,
    SERVER_URL,
)

MODEL_PATH = "client_server"
# CLIENT_TMP_PATH = "client_tmp"

# Uncomment here to have both the server and client in the same terminal
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
time.sleep(3)


# def decrypt_output_with_wrong_key(encrypted_image):
#     """Decrypt the encrypted output using a different private key."""
#     # Retrieve the matcher's deployment path
#     matcher_path = MATCHERS_PATH / f"{matcher_name}/deployment"

#     # Instantiate the client interface and generate a new private key
#     wrong_client = FHEClient(matcher_path, matcher_name)
#     wrong_client.generate_private_and_evaluation_keys(force=True)

#     # Deserialize, decrypt and post-process the encrypted output using the new private key
#     output_result = wrong_client.deserialize_decrypt_post_process(encrypted_image)

#     # # For matchers that are expected to output black and white images, generate two other random
#     # # channels for better display
#     # if matcher_name in ["black and white", "ridge detection"]:
#     #     # Green channel
#     #     wrong_client.generate_private_and_evaluation_keys(force=True)
#     #     output_result[:, :, 1] = wrong_client.deserialize_decrypt_post_process(
#     #         encrypted_image
#     #     )[:, :, 0]

#     #     # Blue channel
#     #     wrong_client.generate_private_and_evaluation_keys(force=True)
#     #     output_result[:, :, 2] = wrong_client.deserialize_decrypt_post_process(
#     #         encrypted_image
#     #     )[:, :, 0]

#     return output_result


def shorten_bytes_object(bytes_object, limit=500):
    """Shorten the input bytes object to a given length.

    Encrypted data is too large for displaying it in the browser using Gradio. This function
    provides a shorten representation of it.

    Args:
        bytes_object (bytes): The input to shorten
        limit (int): The length to consider. Default to 500.

    Returns:
        str: Hexadecimal string shorten representation of the input byte object.

    """
    # Define a shift for better display
    shift = 100
    return bytes_object[shift : limit + shift].hex()


def get_client():
    """Get the client API.

    Args:
        user_id (int): The current user's ID.
        filter_name (str): The filter chosen by the user

    Returns:
        FHEClient: The client API.
    """
    return FHEModelClient(MODEL_PATH)


def get_client_file_path(name, user_id):
    """Get the correct temporary file path for the client.

    Args:
        name (str): The desired file name.
        user_id (int): The current user's ID.
        filter_name (str): The filter chosen by the user

    Returns:
        pathlib.Path: The file path.
    """
    return CLIENT_TMP_PATH / f"{name}_embedding_{user_id}"


def clean_temporary_files(n_keys=20):
    """Clean keys and encrypted images.

    A maximum of n_keys keys and associated temporary files are allowed to be stored. Once this
    limit is reached, the oldest files are deleted.

    Args:
        n_keys (int): The maximum number of keys and associated files to be stored. Default to 20.

    """
    # Get the oldest key files in the key directory
    key_dirs = sorted(KEYS_PATH.iterdir(), key=os.path.getmtime)

    # If more than n_keys keys are found, remove the oldest
    user_ids = []
    if len(key_dirs) > n_keys:
        n_keys_to_delete = len(key_dirs) - n_keys
        for key_dir in key_dirs[:n_keys_to_delete]:
            user_ids.append(key_dir.name)
            shutil.rmtree(key_dir)

    # Get all the encrypted objects in the temporary folder
    client_files = Path(CLIENT_TMP_PATH).iterdir()
    server_files = Path(SERVER_TMP_PATH).iterdir()

    # Delete all files related to the ids whose keys were deleted
    for file in chain(client_files, server_files):
        for user_id in user_ids:
            if user_id in file.name:
                file.unlink()


def keygen(matcher_name):
    """Generate the private key associated to a matcher.

    Args:
        matcher_name (str): The current matcher to consider.

    Returns:
        (user_id, True) (Tuple[int, bool]): The current user's ID and a boolean used for visual display.

    """
    # Clean temporary files
    clean_temporary_files()

    # Create an ID for the current user
    user_id = np.random.randint(0, 2**32)
    # user_id = 298147048

    # Retrieve the client API
    client = get_client()

    # Generate a private key
    client.generate_private_and_evaluation_keys(force=True)

    # Retrieve the serialized evaluation key. In this case, as circuits are fully leveled, this
    # evaluation key is empty. However, for software reasons, it is still needed for proper FHE
    # execution
    evaluation_key = client.get_serialized_evaluation_keys()

    # Save evaluation_key as bytes in a file as it is too large to pass through regular Gradio
    # buttons (see https://github.com/gradio-app/gradio/issues/1877)
    evaluation_key_path = get_client_file_path("evaluation_key", user_id)

    with evaluation_key_path.open("wb") as evaluation_key_file:
        evaluation_key_file.write(evaluation_key)

    return (user_id, True)


def detect_and_crop_face(
    image: str,
    min_aspect_ratio: float = 0.5,
    max_aspect_ratio: float = 1.5,
    min_face_size: float = 0.01,
    max_face_size: float = 0.6,
) -> Tuple[np.ndarray, Tuple[int, int, int, int], np.ndarray]:
    # Read the image
    # image = cv2.imread(image_path)
    image_path = "test"
    if image is None:
        print(f"Failed to load image: {image_path}")
        return None

    # Print the image depth to debug
    print(f"Image Depth: {image.dtype}, Shape: {image.shape}")

    # Check if the image is of type CV_64F (float64) and convert to uint8
    if image.dtype == np.float64:
        print(f"Converting image from float64 to uint8 for {image_path}")
        image = cv2.convertScaleAbs(image)  # Scale and convert to 8-bit

    elif image.dtype != np.uint8:
        print(f"Converting image from {image.dtype} to uint8 for {image_path}")
        image = cv2.convertScaleAbs(image)  # Convert to 8-bit unsigned

    # Convert to grayscale
    try:
        gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    except cv2.error as e:
        print(f"Error converting image to grayscale: {e} for {image_path}")
        return None

    # Load the face classifier
    face_classifier = cv2.CascadeClassifier(
        cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
    )

    # Detect faces
    faces = face_classifier.detectMultiScale(
        gray_image,
        scaleFactor=1.1,
        minNeighbors=5,
        minSize=(int(image.shape[1] * 0.1), int(image.shape[0] * 0.1)),
    )

    valid_faces = []
    for x, y, w, h in faces:
        aspect_ratio = w / h
        face_area = w * h
        image_area = image.shape[0] * image.shape[1]
        face_size_ratio = face_area / image_area

        if (
            min_aspect_ratio <= aspect_ratio <= max_aspect_ratio
            and min_face_size <= face_size_ratio <= max_face_size
        ):
            valid_faces.append((x, y, w, h))

    if not valid_faces:
        print(f"No suitable faces detected in {image_path}")
        return None

    # Sort faces by area (descending) and select the largest
    valid_faces.sort(key=lambda f: f[2] * f[3], reverse=True)
    (x, y, w, h) = valid_faces[0]

    # Crop the face
    try:
        face_crop = image[
            int(y - h * 0.1) : int(y + h * 1.1), int(x - w * 0.1) : int(x + w * 1.1)
        ]
        if face_crop.size == 0:
            print(f"Failed to crop face for {image_path}: resulting crop is empty")
            return None
    except Exception as e:
        print(f"Error cropping face from {image_path}: {e}")
        return None

    # Convert to RGB for display
    try:
        face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
    except cv2.error as e:
        print(f"Error converting cropped face to RGB: {e} for {image_path}")
        return None

    return face_crop_rgb, (x, y, w, h), image


def preprocess_image(input_image):
    # TODO change for facenet
    model = InceptionResnetV1(pretrained="vggface2").eval()
    input_image = np.array(input_image)
    image_crop = detect_and_crop_face(image=input_image)
    preprocess = transforms.Compose(
        [
            transforms.Resize((160, 160)),  # Resize to 160x160 as required by the model
            transforms.ToTensor(),  # Convert to tensor
            transforms.Normalize(
                [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
            ),  # Normalize to [-1, 1]
        ]
    )
    if image_crop[0] is not None:
        img_tensor = preprocess(Image.fromarray(image_crop[0]))
        img_tensor = img_tensor.unsqueeze(0)
        with torch.no_grad():
            embedding = model(img_tensor)
        return embedding.numpy().flatten()


def encrypt(user_id, selfie_image, id_image):
    """Encrypt the given image for a specific user and filter.

    Args:
        user_id (int): The current user's ID.
        selfie_image (np.ndarray): The image to encrypt.
        id_image (np.ndarray): The image to encrypt.

    Returns:
        (input_image, encrypted_image_short) (Tuple[bytes]): The encrypted image and one of its
        representation.

    """
    if user_id == "":
        raise gr.Error("Please generate the private key first.")

    # for input_image in [selfie_image, id_image]:
    #     if input_image is None:
    #         raise gr.Error("Please choose an image first.")

    #     if input_image.shape[-1] != 3:
    #         raise ValueError(
    #     f"Input image must have 3 channels (RGB). Current shape: {input_image.shape}"
    # )

    # Resize the image if it hasn't the shape (100, 100, 3)

    selfie_image_orig = selfie_image.copy()
    id_image_orig = id_image.copy()

    selfie_image = Image.fromarray(selfie_image).convert("RGB")
    id_image = Image.fromarray(id_image).convert("RGB")
    embeddings_selfie = preprocess_image(selfie_image)
    embeddings_id = preprocess_image(id_image)
    X = np.concatenate((embeddings_selfie, embeddings_id))[np.newaxis, ...]
    # Retrieve the client API
    client: FHEModelClient = get_client()

    # Pre-process, encrypt and serialize the image
    encrypted_image = client.quantize_encrypt_serialize(X)

    # Save encrypted_image to bytes in a file, since too large to pass through regular Gradio
    # buttons, https://github.com/gradio-app/gradio/issues/1877
    encrypted_embedding = get_client_file_path("encrypted_embedding", user_id)

    with encrypted_embedding.open("wb") as encrypted_image_file:
        encrypted_image_file.write(encrypted_image)

    # Create a truncated version of the encrypted image for display
    encrypted_image_short = shorten_bytes_object(encrypted_image)

    return (
        encrypted_image_short,
        resize_img(selfie_image_orig),
        resize_img(id_image_orig),
    )


def send_input(user_id):
    """Send the encrypted input image as well as the evaluation key to the server.

    Args:
        user_id (int): The current user's ID.
        filter_name (str): The current filter to consider.
    """
    # Get the evaluation key path
    evaluation_key_path = get_client_file_path("evaluation_key", user_id)

    if user_id == "" or not evaluation_key_path.is_file():
        raise gr.Error("Please generate the private key first.")

    encrypted_input_path = get_client_file_path("encrypted_embedding", user_id)

    if not encrypted_input_path.is_file():
        raise gr.Error(
            "Please generate the private key and then encrypt an image first."
        )

    # Define the data and files to post
    data = {
        "user_id": user_id,
    }

    files = [
        ("files", open(encrypted_input_path, "rb")),
        ("files", open(evaluation_key_path, "rb")),
    ]

    # Send the encrypted input image and evaluation key to the server
    url = SERVER_URL + "send_input"
    with requests.post(
        url=url,
        data=data,
        files=files,
    ) as response:
        return response.ok


def run_fhe(user_id):
    """Apply the filter on the encrypted image previously sent using FHE.

    Args:
        user_id (int): The current user's ID.
        filter_name (str): The current filter to consider.
    """
    data = {
        "user_id": user_id,
    }

    # Trigger the FHE execution on the encrypted image previously sent
    url = SERVER_URL + "run_fhe"
    with requests.post(
        url=url,
        data=data,
    ) as response:
        if response.ok:
            return response.json()
        else:
            raise gr.Error("Please wait for the input image to be sent to the server.")


def get_output(user_id):
    """Retrieve the encrypted output image.

    Args:
        user_id (int): The current user's ID.
        filter_name (str): The current filter to consider.

    Returns:
        encrypted_output_image_short (bytes): A representation of the encrypted result.

    """
    data = {
        "user_id": user_id,
    }

    # Retrieve the encrypted output image
    url = SERVER_URL + "get_output"
    with requests.post(
        url=url,
        data=data,
    ) as response:
        if response.ok:
            encrypted_output = response.content

            # Save the encrypted output to bytes in a file as it is too large to pass through regular
            # Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
            encrypted_output_path = get_client_file_path("encrypted_output", user_id)

            with encrypted_output_path.open("wb") as encrypted_output_file:
                encrypted_output_file.write(encrypted_output)

            # # Decrypt the image using a different (wrong) key for display
            # output_image_representation = decrypt_output_with_wrong_key(
            #     encrypted_output
            # )

            # return {
            #     encrypted_output_representation: gr.update(
            #         value=resize_img(output_image_representation)
            #     )
            # }

            # Create a truncated version of the encrypted image for display
            encrypted_output_short = shorten_bytes_object(encrypted_output)

            return encrypted_output_short

        else:
            raise gr.Error("Please wait for the FHE execution to be completed.")


def decrypt_output(user_id):
    """Decrypt the result.

    Args:
        user_id (int): The current user's ID.
        filter_name (str): The current filter to consider.

    Returns:
        (output_image, False, False) ((Tuple[np.ndarray, bool, bool]): The decrypted output, as
            well as two booleans used for resetting Gradio checkboxes

    """
    if user_id == "":
        raise gr.Error("Please generate the private key first.")

    # Get the encrypted output path
    encrypted_output_path = get_client_file_path("encrypted_output", user_id)

    if not encrypted_output_path.is_file():
        raise gr.Error("Please run the FHE execution first.")

    # Load the encrypted output as bytes
    with encrypted_output_path.open("rb") as encrypted_output_file:
        encrypted_output = encrypted_output_file.read()

    # Retrieve the client API
    client = get_client()

    # Deserialize, decrypt and post-process the encrypted output
    decrypted_ouput = client.deserialize_decrypt_dequantize(encrypted_output)

    print(f"Decrypted output: {decrypted_ouput.shape=}")
    print(f"Decrypted output: {decrypted_ouput=}")

    predicted_class_id = np.argmax(decrypted_ouput)
    print(f"{predicted_class_id=}")
    return "PASS" if predicted_class_id == 1 else "FAIL"


def resize_img(img, width=256, height=256):
    """Resize the image."""
    if img.dtype != np.uint8:
        img = img.astype(np.uint8)
    img_pil = Image.fromarray(img)
    # Resize the image
    resized_img_pil = img_pil.resize((width, height))
    # Convert back to a np array
    return np.array(resized_img_pil)


demo = gr.Blocks()


print("Starting the demo...")
with demo:
    gr.Markdown(
        """
        <!--p align="center">
            <img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
        </p-->
        <h1 align="center">Verio “Privacy-Preserving Biometric Verification for Authentication”</h1>
        <p align="center">
            #ppaihackteam14  
            <a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>

            <a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>

            <a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>

            <a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
        </p>
        <!--p align="center">
            <img src="https://user-images.githubusercontent.com/56846628/219605302-5baafac4-cf6f-4f06-9a96-91cef2b84a63.png" width="70%" height="70%">
        </p-->
        """
    )

    gr.Markdown("## Client side")
    gr.Markdown("### Step 1: Upload input images. ")
    # gr.Markdown(
    #     f"The image will automatically be resized to shape ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}). "
    #     "The image here, however, is displayed in its original resolution. The true image used "
    #     "in this demo can be seen in Step 8."
    # )
    gr.Markdown("The query image to certify.")
    with gr.Row():
        input_query_img = gr.Image(
            value=None,
            label="Upload an image here.",
            height=256,
            width=256,
            # source="upload",
            interactive=True,
        )

        selfie_examples = gr.Examples(
            examples=SELFIE_EXAMPLES,
            inputs=[input_query_img],
            examples_per_page=5,
            label="Examples to use.",
        )
    gr.Markdown("The reference image.")
    with gr.Row():
        input_reference_img = gr.Image(
            value=None,
            label="Upload an image here.",
            height=256,
            width=256,
            # source="upload",
            interactive=True,
        )

        id_examples = gr.Examples(
            examples=ID_EXAMPLES,
            inputs=[input_reference_img],
            examples_per_page=5,
            label="Examples to use.",
        )

    # gr.Markdown("### Step 2: Choose your matcher.")
    # matcher_name = gr.Dropdown(
    #     choices=AVAILABLE_MATCHERS,
    #     value="random guessing",
    #     label="Choose your matcher",
    #     interactive=True,
    # )

    # gr.Markdown("#### Notes")
    # gr.Markdown(
    #     """
    #     - The private key is used to encrypt and decrypt the data and will never be shared.
    #     - No public key is required for these matcher operators.
    #     """
    # )

    gr.Markdown("### Step 3: Generate the private key.")
    keygen_button = gr.Button("Generate the private key.")

    with gr.Row():
        keygen_checkbox = gr.Checkbox(label="Private key generated:", interactive=False)

    user_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
    # encrypted_query_image = gr.Textbox(
    #     value=ENCRYPTED_QUERY_NAME,
    #     label="",
    #     max_lines=2,
    #     interactive=False,
    #     visible=False,
    # )
    # encrypted_reference_image = gr.Textbox(
    #     value=ENCRYPTED_REFERENCE_NAME,
    #     label="",
    #     max_lines=2,
    #     interactive=False,
    #     visible=False,
    # )

    gr.Markdown("### Step 4: Encrypt the input images using FHE.")
    encrypt_button = gr.Button("Encrypt the images using FHE.")

    with gr.Row():
        encrypted_input = gr.Textbox(
            label="Encrypted input images representation:",
            max_lines=2,
            interactive=False,
        )

    gr.Markdown("## Server side")
    gr.Markdown(
        "The encrypted value is received by the server. The server can then compute the matcher "
        "directly over encrypted values. Once the computation is finished, the server returns "
        "the encrypted results to the client."
    )

    gr.Markdown("### Step 5: Send the encrypted images to the server.")
    send_input_button = gr.Button("Send the encrypted images to the server.")
    send_input_checkbox = gr.Checkbox(label="Encrypted images sent.", interactive=False)

    gr.Markdown("### Step 6: Run FHE execution.")
    execute_fhe_button = gr.Button("Run FHE execution.")
    fhe_execution_time = gr.Textbox(
        label="Total FHE execution time (in seconds):", max_lines=1, interactive=False
    )

    gr.Markdown("### Step 7: Receive the encrypted output from the server.")
    gr.Markdown(
        "The result displayed here is the encrypted result sent by the server, which has been "
        "decrypted using a different private key. This is only used to visually represent an "
        "encrypted result."
    )
    get_output_button = gr.Button(
        "Receive the encrypted output result from the server."
    )

    with gr.Row():
        # encrypted_output_representation = gr.Label()
        encrypted_output_representation = gr.Textbox(
            label="Encrypted encrypted output result:",
            max_lines=2,
            interactive=False,
        )
        # encrypted_output_representation = gr.Image(
        #     label=f"Encrypted output representation ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}):",
        #     interactive=False,
        #     height=256,
        #     width=256,
        # )

    gr.Markdown("## Client side")
    gr.Markdown(
        "The encrypted output is sent back to the client, who can finally decrypt it with the "
        "private key. Only the client is aware of the original input images and the result of the matching."
    )

    gr.Markdown("### Step 8: Decrypt the output.")
    gr.Markdown(
        "The images displayed on the left are the input images used during the demo. The output result "
        "can be seen on the right."
    )
    decrypt_button = gr.Button("Decrypt the output")

    # Final input vs output display
    with gr.Row():
        original_query_image = gr.Image(
            input_query_img.value,
            label=f"Input query image:",
            interactive=False,
            height=256,
            width=256,
        )
        original_reference_image = gr.Image(
            input_reference_img.value,
            label=f"Input reference image:",
            interactive=False,
            height=256,
            width=256,
        )
        output_result = gr.Label()
        # output_image = gr.Image(
        #     label=f"Output image ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}):",
        #     interactive=False,
        #     height=256,
        #     width=256,
        # )

    # Button to generate the private key
    keygen_button.click(
        keygen,
        inputs=[],
        outputs=[user_id, keygen_checkbox],
    )

    # Button to encrypt input query on the client side
    encrypt_button.click(
        encrypt,
        inputs=[user_id, input_query_img, input_reference_img],
        outputs=[encrypted_input, original_query_image, original_reference_image],
    )

    # Button to send the encodings to the server using post method
    send_input_button.click(send_input, inputs=[user_id], outputs=[send_input_checkbox])

    # Button to send the encodings to the server using post method
    execute_fhe_button.click(run_fhe, inputs=[user_id], outputs=[fhe_execution_time])

    # Button to send the encodings to the server using post method
    get_output_button.click(
        get_output,
        inputs=[user_id],
        outputs=[encrypted_output_representation],
    )

    # Button to decrypt the output on the client side
    decrypt_button.click(
        decrypt_output,
        inputs=[user_id],
        # outputs=[output_result, original_query_image, original_reference_image],
        outputs=[output_result],
    )

    gr.Markdown(
        "The app was built with [Concrete-ML](https://github.com/zama-ai/concrete-ml), a "
        "Privacy-Preserving Machine Learning (PPML) open-source set of tools by [Zama](https://zama.ai/). "
        "Try it yourself and don't forget to star on Github &#11088;."
    )

demo.launch(share=False)