File size: 10,183 Bytes
0f67148
 
c2aa692
895bc99
 
 
0f67148
1336bb0
0f67148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb9492e
0f67148
eb9492e
0f67148
 
 
 
 
 
 
 
 
895bc99
0f67148
895bc99
0f67148
895bc99
 
 
0f67148
 
895bc99
 
 
0f67148
895bc99
 
 
 
 
 
 
fcd5d1f
895bc99
 
 
 
 
 
 
 
0ba7a71
0f67148
 
 
cbefb6b
0f67148
cbefb6b
 
 
 
 
0f67148
 
895bc99
 
 
 
bd35a11
895bc99
 
 
 
 
 
0f67148
 
 
 
 
895bc99
0f67148
 
 
895bc99
 
0f67148
eb9492e
0f67148
 
 
 
 
 
 
 
 
 
ea35432
2d8275e
c88fcb6
cbefb6b
 
 
7e99bfa
cbefb6b
7e99bfa
4eb0fdc
7e99bfa
 
cbefb6b
 
7e99bfa
b1dc37d
cbefb6b
c88fcb6
cbefb6b
7e99bfa
 
 
 
 
 
 
 
 
 
 
 
 
b1dc37d
cbefb6b
b1dc37d
f437197
469e2ef
b1dc37d
 
 
 
 
 
7221031
b1dc37d
 
 
 
7221031
b1dc37d
 
 
 
bd5da1e
b1dc37d
 
 
 
 
7e99bfa
b70d541
6eca406
 
 
a841321
7e99bfa
c5377d5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import nltk
import re
import nltkmodule
from newspaper import Article
from newspaper import fulltext
import requests
from nltk.tokenize import word_tokenize
from sentence_transformers import SentenceTransformer, models, losses, LoggingHandler
import pandas as pd
import numpy as np
from torch.utils.data import DataLoader
import math
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import *
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
from sklearn.metrics.pairwise import cosine_similarity
import networkx as nx
from nltk.tokenize import sent_tokenize
import scispacy
import en_core_sci_lg
import string
import gradio as gr
import inflect

inflect_op = inflect.engine()
nlp = en_core_sci_lg.load()
sp = en_core_sci_lg.load()
all_stopwords = sp.Defaults.stop_words


def remove_stopwords(sen):
    sen_new = " ".join([i for i in sen if i not in stop_words])
    return sen_new

def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
  element=[]
  final_textrank_list=[]
  document=[]
  text_doc=[]
  score_list=[]
  sum_list=[]
  model_1 = SentenceTransformer(model_1)
  model_2 = SentenceTransformer(model_2)
  url = article_link
  html = requests.get(url).text
  article = fulltext(html)
  corpus=sent_tokenize(article)
  indicator_list=['concluded','concludes','in a study', 'concluding','conclude','in sum','in a recent study','therefore','thus','so','hence',
          'as a result','accordingly','consequently','in short','proves that','shows that','suggests that','demonstrates that','found that','observed that',
          'indicated that','suggested that','demonstrated that']
  count_dict={}
  for l in corpus:
    c=0
    for l2 in indicator_list:     
       if l.find(l2)!=-1:  ### then it is a substring
          c=1
          break           
    if c:#
       count_dict[l]=1
    else:
       count_dict[l]=0
  for sent, score in count_dict.items():
    score_list.append(score)
  clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ", regex=True).tolist()
  corpus_embeddings = model_1.encode(clean_sentences_new)
  sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
  for i in range(len(clean_sentences_new)):
    len_embeddings=(len(corpus_embeddings[i]))
    for j in range(len(clean_sentences_new)):
      if i != j:      
        if(len_embeddings == 1024):
          sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
        elif(len_embeddings == 768):
          sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
  nx_graph = nx.from_numpy_array(sim_mat)
  scores = nx.pagerank(nx_graph)
  sentences=((scores[i],s) for i,s in enumerate(corpus))

  for elem in sentences:
    element.append(elem[0])
  for sc, lst in zip(score_list, element):  ########### taking the scores from both the lists 
    sum1=sc+lst
    sum_list.append(sum1)
  x=sorted(((sum_list[i],s) for i,s in enumerate(corpus)), reverse=True)
  for elem in x:
    final_textrank_list.append(elem[1]) 
  a=int((10*len(final_textrank_list))/100.0)
  if(a<5):
    total=5
  else:
    total=int(a)
  for i in range(total):
    document.append(final_textrank_list[i])
  doc=" ".join(document)
  for i in document:
    doc_1=nlp(i)
    text_doc.append([X.text for X in doc_1.ents])
  entity_list = [item for sublist in text_doc for item in sublist]
  entity_list = [word for word in entity_list if not word in all_stopwords]
  entity_list = [word_entity for word_entity in entity_list if(inflect_op.singular_noun(word_entity) == False)]
  entity_list=list(dict.fromkeys(entity_list))
  doc_embedding = model_2.encode([doc])
  candidates=entity_list
  candidate_embeddings = model_2.encode(candidates)
  distances = cosine_similarity(doc_embedding, candidate_embeddings)
  top_n = max_num_keywords
  keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
  keywords = '\n'.join(keyword_list) 
  return keywords

igen=gr.Interface(keyphrase_generator, 
                  inputs=[gr.components.Textbox(lines=1, placeholder="Provide an online health article web link here",value="", label="Article web link"),
                      gr.components.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
                                                 'sentence-transformers/all-mpnet-base-v1',                       
                                                 'sentence-transformers/all-distilroberta-v1',
                                                 'sentence-transformers/gtr-t5-large',
                                                 'pritamdeka/S-Bluebert-snli-multinli-stsb',
                                                 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',                                                 
                                                 'sentence-transformers/stsb-mpnet-base-v2',
                                                 'sentence-transformers/all-roberta-large-v1',
                                                 'sentence-transformers/stsb-roberta-base-v2',
                                                 'sentence-transformers/stsb-distilroberta-base-v2',
                                                 'sentence-transformers/sentence-t5-large',
                                                 'sentence-transformers/sentence-t5-base'], 
                                        type="value", 
                                        value='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb', 
                                        label="Select any SBERT model for TextRank from the list below"),
                     gr.components.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
                                                 'sentence-transformers/all-mpnet-base-v1',
                                                 'sentence-transformers/paraphrase-distilroberta-base-v1',
                                                 'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
                                                 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
                                                 'sentence-transformers/paraphrase-albert-small-v2',
                                                 'sentence-transformers/paraphrase-albert-base-v2',                                                
                                                 'sentence-transformers/paraphrase-MiniLM-L12-v2',
                                                 'sentence-transformers/paraphrase-MiniLM-L6-v2',
                                                 'sentence-transformers/all-MiniLM-L12-v2',
                                                 'sentence-transformers/all-distilroberta-v1',
                                                 'sentence-transformers/paraphrase-TinyBERT-L6-v2',
                                                 'sentence-transformers/paraphrase-MiniLM-L3-v2',
                                                 'sentence-transformers/all-MiniLM-L6-v2'], 
                                        type="value", 
                                        value='sentence-transformers/all-mpnet-base-v1', 
                                        label="Select any SBERT model for keyphrases from the list below"),                     
                     gr.components.Slider(minimum=5, maximum=30, step=1, value=10, label="Max Keywords")],
             outputs=gr.components.Textbox(type="text", label="Output", lines=10), theme="peach", 
             title="Health Article Keyphrase Generator", 
             description="Generates the keyphrases from an online health article which best describes the article. Examples are provided below for demo purposes. Choose any one example to see the results. ",
             examples=[
                         ["https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",                        
                         'sentence-transformers/all-mpnet-base-v1',
                         'sentence-transformers/paraphrase-MiniLM-L12-v2',
                         10],
                         
                         ["https://www.cancer.news/2022-02-04-doctors-testifying-covid-vaccines-causing-cancer-aids.html#",                        
                         'sentence-transformers/all-mpnet-base-v1',
                         'sentence-transformers/all-mpnet-base-v1',
                         12],
                         
                         ["https://www.medicalnewstoday.com/articles/alzheimers-addressing-sleep-disturbance-may-alleviate-symptoms",
                         'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
                         'sentence-transformers/all-mpnet-base-v1',
                         10],
                         
                        ["https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant",
                         'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
                         'sentence-transformers/all-mpnet-base-v1',
                         15]                      
                       ],
             article= "The work is based on a part of the paper provided <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>here</a>." 
             "\t It uses the TextRank algorithm with <a href=https://www.sbert.net/>SBERT</a> to first find the top ranked sentences and then extracts the keyphrases" 
             "\t from those sentences using <a href = https://allenai.github.io/scispacy/>scispaCy</a> and SBERT."
             "\t The list of SBERT models provided can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
             "\t The default model names are provided which can be changed from the list of models available. "
             "\t The value of output keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.")
             
igen.launch(share=False)
####