File size: 4,680 Bytes
ad773e5
 
 
edb2d41
 
 
 
ad773e5
edb2d41
ad773e5
 
 
 
 
 
 
 
edb2d41
ad773e5
 
 
 
 
 
 
edb2d41
 
 
 
 
 
 
 
 
fec8e6e
edb2d41
ad773e5
 
 
 
 
 
 
 
 
 
1141e03
ad773e5
 
 
 
 
 
 
 
 
 
 
edb2d41
 
 
 
 
 
 
 
 
 
 
 
fec8e6e
edb2d41
 
 
d9bd1ee
edb2d41
 
 
 
 
 
 
 
 
a48362a
edb2d41
 
1141e03
edb2d41
 
 
 
 
 
 
 
 
 
 
 
a48362a
edb2d41
 
1141e03
edb2d41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9bd1ee
edb2d41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad773e5
 
edb2d41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
from openai import OpenAI
import os
from io import BytesIO
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from docx import Document

# Custom CSS
css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

# Set up OpenAI client
ACCESS_TOKEN = os.getenv("HF_TOKEN")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

# Function to handle chat responses
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    
    for message in client.chat.completions.create(
        model="meta-llama/Meta-Llama-3.1-8B-Instruct",
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        messages=messages,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

# Function to save chat history to a text file
def save_as_txt(history):
    with open("chat_history.txt", "w") as f:
        for user_message, assistant_message in history:
            f.write(f"User: {user_message}\n")
            f.write(f"Assistant: {assistant_message}\n")
    return "chat_history.txt"

# Function to save chat history to a DOCX file
def save_as_docx(history):
    doc = Document()
    doc.add_heading('Chat History', 0)
    
    for user_message, assistant_message in history:
        doc.add_paragraph(f"User: {user_message}")
        doc.add_paragraph(f"Assistant: {assistant_message}")
    
    doc.save("chat_history.docx")
    return "chat_history.docx"

# Function to save chat history to a PDF file
def save_as_pdf(history):
    buffer = BytesIO()
    c = canvas.Canvas(buffer, pagesize=letter)
    width, height = letter
    y = height - 40
    
    c.drawString(30, y, "Chat History")
    y -= 30
    
    for user_message, assistant_message in history:
        c.drawString(30, y, f"User: {user_message}")
        y -= 20
        c.drawString(30, y, f"Assistant: {assistant_message}")
        y -= 30
        
        if y < 40:
            c.showPage()
            y = height - 40
            
    c.save()
    buffer.seek(0)
    
    with open("chat_history.pdf", "wb") as f:
        f.write(buffer.read())
    
    return "chat_history.pdf"

# Gradio interface
def handle_file_save(history, file_format):
    if file_format == "txt":
        return save_as_txt(history)
    elif file_format == "docx":
        return save_as_docx(history)
    elif file_format == "pdf":
        return save_as_pdf(history)

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-P",
        ),
        gr.Dropdown(
            choices=["txt", "docx", "pdf"],
            label="Save as",
        ),
    ],
    outputs=[
        gr.File(label="Download Chat History"),
    ],
    css=css,
    theme="allenai/gradio-theme",
)

def save_handler(message, history, system_message, max_tokens, temperature, top_p, file_format):
    response = respond(message, history, system_message, max_tokens, temperature, top_p)
    saved_file = handle_file_save(history, file_format)
    return saved_file

demo = gr.Interface(
    fn=save_handler,
    inputs=[
        gr.Textbox(value="", label="Message"),
        gr.State(),
        gr.Textbox(value="", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-P",
        ),
        gr.Dropdown(
            choices=["txt", "docx", "pdf"],
            label="Save as",
        ),
    ],
    outputs=gr.File(label="Download Chat History"),
    css=css,
    theme="allenai/gradio-theme",
)

if __name__ == "__main__":
    demo.launch()