zhouxiangxin1998 commited on
Commit
cc5c681
β€’
1 Parent(s): 8c31b30

add auto datatype

Browse files
Files changed (1) hide show
  1. app.py +36 -25
app.py CHANGED
@@ -58,74 +58,85 @@ with demo:
58
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
59
  with gr.TabItem("πŸ† Inverse Folding Leaderboard", elem_id='inverse-folding-table', id=0,):
60
  with gr.Row():
 
61
  inverse_folding_table = gr.components.DataFrame(
62
- pd.read_csv('data/inverse_folding.csv'),
63
  height=99999,
64
  interactive=False,
65
- datatype=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
 
66
  )
67
  with gr.TabItem("πŸ† Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
68
  with gr.Row():
69
- inverse_folding_table = gr.components.DataFrame(
70
- pd.read_csv('data/structure_design.csv'),
 
71
  height=99999,
72
  interactive=False,
73
- datatype=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
74
  )
75
  with gr.TabItem("πŸ† Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
76
  with gr.Row():
77
- inverse_folding_table = gr.components.DataFrame(
78
- pd.read_csv('data/sequence_design.csv'),
 
79
  height=99999,
80
  interactive=False,
81
- datatype=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
82
  )
83
  with gr.TabItem("πŸ† Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
84
  with gr.Row():
85
- inverse_folding_table = gr.components.DataFrame(
86
- pd.read_csv('data/co_design.csv'),
 
87
  height=99999,
88
  interactive=False,
89
- datatype=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
90
  )
91
  with gr.TabItem("πŸ† Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
92
  with gr.Row():
93
- inverse_folding_table = gr.components.DataFrame(
94
- pd.read_csv('data/motif_scaffolding.csv'),
 
95
  height=99999,
96
  interactive=False,
97
- datatype=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
98
  )
99
  with gr.TabItem("πŸ† Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
100
  with gr.Row():
101
- inverse_folding_table = gr.components.DataFrame(
102
- pd.read_csv('data/antibody_design.csv'),
 
103
  height=99999,
104
  interactive=False,
 
105
  )
106
  with gr.TabItem("πŸ… Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
107
  with gr.Row():
108
- inverse_folding_table = gr.components.DataFrame(
109
- pd.read_csv('data/protein_folding.csv'),
 
110
  height=99999,
111
  interactive=False,
112
- datatype=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
113
  )
114
  with gr.TabItem("πŸ… Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
115
  with gr.Row():
116
- inverse_folding_table = gr.components.DataFrame(
117
- pd.read_csv('data/multi_state_prediction.csv'),
 
118
  height=99999,
119
  interactive=False,
120
- datatype=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
121
  )
122
  with gr.TabItem("πŸ… Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
123
  with gr.Row():
124
- inverse_folding_table = gr.components.DataFrame(
125
- pd.read_csv('data/conformation_prediction.csv'),
 
126
  height=99999,
127
  interactive=False,
128
- datatype=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
129
  )
130
 
131
 
 
58
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
59
  with gr.TabItem("πŸ† Inverse Folding Leaderboard", elem_id='inverse-folding-table', id=0,):
60
  with gr.Row():
61
+ inverse_folding_csv = pd.read_csv('data/inverse_folding.csv')
62
  inverse_folding_table = gr.components.DataFrame(
63
+ inverse_folding_csv,
64
  height=99999,
65
  interactive=False,
66
+ datatype=['markdown'] + (len(inverse_folding_csv.columns)-1) * ['number'],
67
+
68
  )
69
  with gr.TabItem("πŸ† Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
70
  with gr.Row():
71
+ structure_design_csv = pd.read_csv('data/structure_design.csv')
72
+ structure_design_table = gr.components.DataFrame(
73
+ structure_design_csv,
74
  height=99999,
75
  interactive=False,
76
+ datatype=['markdown'] + (len(structure_design_csv.columns)-1) * ['number'],
77
  )
78
  with gr.TabItem("πŸ† Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
79
  with gr.Row():
80
+ sequence_design_csv = pd.read_csv('data/sequence_design.csv'),
81
+ sequence_design_table = gr.components.DataFrame(
82
+ sequence_design_csv,
83
  height=99999,
84
  interactive=False,
85
+ datatype=['markdown'] + (len(sequence_design_csv.columns)-1) * ['number'],
86
  )
87
  with gr.TabItem("πŸ† Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
88
  with gr.Row():
89
+ co_design_csv = pd.read_csv('data/co_design.csv')
90
+ co_design_table = gr.components.DataFrame(
91
+ co_design_csv,
92
  height=99999,
93
  interactive=False,
94
+ datatype=['markdown'] + (len(co_design_csv.columns)-1) * ['number'],
95
  )
96
  with gr.TabItem("πŸ† Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
97
  with gr.Row():
98
+ motif_scaffolding_csv = pd.read_csv('data/motif_scaffolding.csv')
99
+ motif_scaffolding_table = gr.components.DataFrame(
100
+ motif_scaffolding_csv,
101
  height=99999,
102
  interactive=False,
103
+ datatype=['markdown'] + (len(motif_scaffolding_csv.columns)-1) * ['number'],
104
  )
105
  with gr.TabItem("πŸ† Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
106
  with gr.Row():
107
+ antibody_design_csv = pd.read_csv('data/antibody_design.csv')
108
+ antibody_design_table = gr.components.DataFrame(
109
+ antibody_design_csv,
110
  height=99999,
111
  interactive=False,
112
+ datatype=['markdown'] + (len(antibody_design_csv.columns)-1) * ['number'],
113
  )
114
  with gr.TabItem("πŸ… Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
115
  with gr.Row():
116
+ protein_folding_csv = pd.read_csv('data/protein_folding.csv')
117
+ protein_folding_table = gr.components.DataFrame(
118
+ protein_folding_csv,
119
  height=99999,
120
  interactive=False,
121
+ datatype=['markdown'] + (len(protein_folding_csv.columns)-1) * ['number'],
122
  )
123
  with gr.TabItem("πŸ… Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
124
  with gr.Row():
125
+ multi_state_prediction_csv = pd.read_csv('data/multi_state_prediction.csv')
126
+ multi_state_prediction_table = gr.components.DataFrame(
127
+ multi_state_prediction_csv,
128
  height=99999,
129
  interactive=False,
130
+ datatype=['markdown'] + (len(multi_state_prediction_csv.columns)-1) * ['number'],
131
  )
132
  with gr.TabItem("πŸ… Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
133
  with gr.Row():
134
+ conformation_prediction = pd.read_csv('data/conformation_prediction.csv')
135
+ conformation_prediction_table = gr.components.DataFrame(
136
+ conformation_prediction,
137
  height=99999,
138
  interactive=False,
139
+ datatype=['markdown'] + (len(conformation_prediction.columns)-1) * ['number'],
140
  )
141
 
142