File size: 1,545 Bytes
0080de0 df4613a 0080de0 df4613a 95f29af df4613a 95f29af df4613a 95f29af df4613a b16aa33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import spaces
import gradio as gr
from transformers import pipeline
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
@spaces.GPU
def predict(input_img):
predictions = pipeline(input_img)
return input_img, {p["label"]: p["score"] for p in predictions}
_HEADER_ = '''
<h2>Toon3D: Seeing Cartoons from a New Perspective</h2>
**Toon3D** lifts cartoons into 3D via aligning and warping backprojected monocular depth predictions..
Project page @ <a href='https://toon3d.studio/' target='_blank'>https://toon3d.studio/</a>
**Important Notes:**
- Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our <a href='https://github.com/TencentARC/InstantMesh?tab=readme-ov-file#running-with-command-line' target='_blank'>Github Repo</a>.
- The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42).
'''
gradio_app = gr.Interface(
predict,
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
title="Toon3D",
)
with gr.Blocks() as demo:
gr.Markdown(_HEADER_)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input = gr.File(file_count="directory")
if __name__ == "__main__":
demo.launch()
|