|
import spaces |
|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") |
|
|
|
@spaces.GPU |
|
def predict(input_img): |
|
predictions = pipeline(input_img) |
|
return input_img, {p["label"]: p["score"] for p in predictions} |
|
|
|
_HEADER_ = ''' |
|
<h2>Toon3D: Seeing Cartoons from a New Perspective</h2> |
|
**Toon3D** lifts cartoons into 3D via aligning and warping backprojected monocular depth predictions.. |
|
Project page @ <a href='https://toon3d.studio/' target='_blank'>https://toon3d.studio/</a> |
|
|
|
**Important Notes:** |
|
- Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our <a href='https://github.com/TencentARC/InstantMesh?tab=readme-ov-file#running-with-command-line' target='_blank'>Github Repo</a>. |
|
- The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42). |
|
''' |
|
|
|
gradio_app = gr.Interface( |
|
predict, |
|
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), |
|
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], |
|
title="Toon3D", |
|
) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(_HEADER_) |
|
with gr.Row(variant="panel"): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input = gr.File(file_count="directory") |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|