documents-restoration / inference_gradio.py
qubvel-hf's picture
qubvel-hf HF staff
Init model on GPU
e7c7d09
raw
history blame
11 kB
import sys
import cv2
import utils
import numpy as np
import torch
from PIL import Image
from utils import convert_state_dict
from models import restormer_arch
from data.preprocess.crop_merge_image import stride_integral
sys.path.append("./data/MBD/")
from data.MBD.infer import net1_net2_infer_single_im
def dewarp_prompt(img):
mask = net1_net2_infer_single_im(img, "data/MBD/checkpoint/mbd.pkl")
base_coord = utils.getBasecoord(256, 256) / 256
img[mask == 0] = 0
mask = cv2.resize(mask, (256, 256)) / 255
return img, np.concatenate((base_coord, np.expand_dims(mask, -1)), -1)
def deshadow_prompt(img):
h, w = img.shape[:2]
# img = cv2.resize(img,(128,128))
img = cv2.resize(img, (1024, 1024))
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
bg_imgs = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
bg_imgs.append(bg_img)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(
diff_img,
None,
alpha=0,
beta=255,
norm_type=cv2.NORM_MINMAX,
dtype=cv2.CV_8UC1,
)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
bg_imgs = cv2.merge(bg_imgs)
bg_imgs = cv2.resize(bg_imgs, (w, h))
# result = cv2.merge(result_planes)
result_norm = cv2.merge(result_norm_planes)
result_norm[result_norm == 0] = 1
shadow_map = np.clip(
img.astype(float) / result_norm.astype(float) * 255, 0, 255
).astype(np.uint8)
shadow_map = cv2.resize(shadow_map, (w, h))
shadow_map = cv2.cvtColor(shadow_map, cv2.COLOR_BGR2GRAY)
shadow_map = cv2.cvtColor(shadow_map, cv2.COLOR_GRAY2BGR)
# return shadow_map
return bg_imgs
def deblur_prompt(img):
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
high_frequency = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_BGR2GRAY)
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_GRAY2BGR)
return high_frequency
def appearance_prompt(img):
h, w = img.shape[:2]
# img = cv2.resize(img,(128,128))
img = cv2.resize(img, (1024, 1024))
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(
diff_img,
None,
alpha=0,
beta=255,
norm_type=cv2.NORM_MINMAX,
dtype=cv2.CV_8UC1,
)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
result_norm = cv2.merge(result_norm_planes)
result_norm = cv2.resize(result_norm, (w, h))
return result_norm
def binarization_promptv2(img):
result, thresh = utils.SauvolaModBinarization(img)
thresh = thresh.astype(np.uint8)
result[result > 155] = 255
result[result <= 155] = 0
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
high_frequency = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_BGR2GRAY)
return np.concatenate(
(
np.expand_dims(thresh, -1),
np.expand_dims(high_frequency, -1),
np.expand_dims(result, -1),
),
-1,
)
def dewarping(model, im_org, device):
INPUT_SIZE = 256
im_masked, prompt_org = dewarp_prompt(im_org.copy())
h, w = im_masked.shape[:2]
im_masked = im_masked.copy()
im_masked = cv2.resize(im_masked, (INPUT_SIZE, INPUT_SIZE))
im_masked = im_masked / 255.0
im_masked = torch.from_numpy(im_masked.transpose(2, 0, 1)).unsqueeze(0)
im_masked = im_masked.float().to(device)
prompt = torch.from_numpy(prompt_org.transpose(2, 0, 1)).unsqueeze(0)
prompt = prompt.float().to(device)
in_im = torch.cat((im_masked, prompt), dim=1)
# inference
base_coord = utils.getBasecoord(INPUT_SIZE, INPUT_SIZE) / INPUT_SIZE
model = model.float()
with torch.no_grad():
pred = model(in_im)
pred = pred[0][:2].permute(1, 2, 0).cpu().numpy()
pred = pred + base_coord
## smooth
for i in range(15):
pred = cv2.blur(pred, (3, 3), borderType=cv2.BORDER_REPLICATE)
pred = cv2.resize(pred, (w, h)) * (w, h)
pred = pred.astype(np.float32)
out_im = cv2.remap(im_org, pred[:, :, 0], pred[:, :, 1], cv2.INTER_LINEAR)
prompt_org = (prompt_org * 255).astype(np.uint8)
prompt_org = cv2.resize(prompt_org, im_org.shape[:2][::-1])
return prompt_org[:, :, 0], prompt_org[:, :, 1], prompt_org[:, :, 2], out_im
def appearance(model, im_org, device):
MAX_SIZE = 1600
# obtain im and prompt
h, w = im_org.shape[:2]
prompt = appearance_prompt(im_org)
in_im = np.concatenate((im_org, prompt), -1)
# constrain the max resolution
if max(w, h) < MAX_SIZE:
in_im, padding_h, padding_w = stride_integral(in_im, 8)
else:
in_im = cv2.resize(in_im, (MAX_SIZE, MAX_SIZE))
# normalize
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
# inference
in_im = in_im.half().to(device)
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred, 0, 1)
pred = pred[0].permute(1, 2, 0).cpu().numpy()
pred = (pred * 255).astype(np.uint8)
if max(w, h) < MAX_SIZE:
out_im = pred[padding_h:, padding_w:]
else:
pred[pred == 0] = 1
shadow_map = cv2.resize(im_org, (MAX_SIZE, MAX_SIZE)).astype(
float
) / pred.astype(float)
shadow_map = cv2.resize(shadow_map, (w, h))
shadow_map[shadow_map == 0] = 0.00001
out_im = np.clip(im_org.astype(float) / shadow_map, 0, 255).astype(np.uint8)
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
def deshadowing(model, im_org, device):
MAX_SIZE = 1600
# obtain im and prompt
h, w = im_org.shape[:2]
prompt = deshadow_prompt(im_org)
in_im = np.concatenate((im_org, prompt), -1)
# constrain the max resolution
if max(w, h) < MAX_SIZE:
in_im, padding_h, padding_w = stride_integral(in_im, 8)
else:
in_im = cv2.resize(in_im, (MAX_SIZE, MAX_SIZE))
# normalize
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
# inference
in_im = in_im.half().to(device)
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred, 0, 1)
pred = pred[0].permute(1, 2, 0).cpu().numpy()
pred = (pred * 255).astype(np.uint8)
if max(w, h) < MAX_SIZE:
out_im = pred[padding_h:, padding_w:]
else:
pred[pred == 0] = 1
shadow_map = cv2.resize(im_org, (MAX_SIZE, MAX_SIZE)).astype(
float
) / pred.astype(float)
shadow_map = cv2.resize(shadow_map, (w, h))
shadow_map[shadow_map == 0] = 0.00001
out_im = np.clip(im_org.astype(float) / shadow_map, 0, 255).astype(np.uint8)
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
def deblurring(model, im_org, device):
# setup image
in_im, padding_h, padding_w = stride_integral(im_org, 8)
prompt = deblur_prompt(in_im)
in_im = np.concatenate((in_im, prompt), -1)
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
in_im = in_im.half().to(device)
# inference
model.to(device)
model.eval()
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred, 0, 1)
pred = pred[0].permute(1, 2, 0).cpu().numpy()
pred = (pred * 255).astype(np.uint8)
out_im = pred[padding_h:, padding_w:]
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
def binarization(model, im_org, device):
im, padding_h, padding_w = stride_integral(im_org, 8)
prompt = binarization_promptv2(im)
h, w = im.shape[:2]
in_im = np.concatenate((im, prompt), -1)
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
in_im = in_im.to(device)
model = model.half()
in_im = in_im.half()
with torch.no_grad():
pred = model(in_im)
pred = pred[:, :2, :, :]
pred = torch.max(torch.softmax(pred, 1), 1)[1]
pred = pred[0].cpu().numpy()
pred = (pred * 255).astype(np.uint8)
pred = cv2.resize(pred, (w, h))
out_im = pred[padding_h:, padding_w:]
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
def model_init(model_path, device):
# prepare model
model = restormer_arch.Restormer(
inp_channels=6,
out_channels=3,
dim=48,
num_blocks=[2, 3, 3, 4],
num_refinement_blocks=4,
heads=[1, 2, 4, 8],
ffn_expansion_factor=2.66,
bias=False,
LayerNorm_type="WithBias",
dual_pixel_task=True,
)
if device == "cpu":
state = convert_state_dict(
torch.load(model_path, map_location="cpu")["model_state"]
)
else:
state = convert_state_dict(
torch.load(model_path, map_location="cuda:0")["model_state"]
)
model.load_state_dict(state)
model.eval()
model = model.to(device)
return model
def resize(image, max_size):
h, w = image.shape[:2]
if max(h, w) > max_size:
if h > w:
h_new = max_size
w_new = int(w * h_new / h)
else:
w_new = max_size
h_new = int(h * w_new / w)
pil_image = Image.fromarray(image)
pil_image = pil_image.resize((w_new, h_new), Image.Resampling.LANCZOS)
image = np.array(pil_image)
return image
def inference_one_image(model, image, tasks, device):
# image should be in BGR format
if "dewarping" in tasks:
*_, image = dewarping(model, image, device)
# if only dewarping return here
if len(tasks) == 1 and "dewarping" in tasks:
return image
image = resize(image, 1536)
if "deshadowing" in tasks:
*_, image = deshadowing(model, image, device)
if "appearance" in tasks:
*_, image = appearance(model, image, device)
if "deblurring" in tasks:
*_, image = deblurring(model, image, device)
if "binarization" in tasks:
*_, image = binarization(model, image, device)
return image