Spaces:
Runtime error
Runtime error
File size: 10,569 Bytes
177316b f358c2b 177316b 9c8f346 425b8b6 177316b f578dc2 177316b f9b4389 177316b f9b4389 177316b 9c8f346 177316b 9c8f346 98c3b25 c3dd0e2 f358c2b 9c8f346 177316b 350d95c 177316b 9c8f346 177316b f358c2b 177316b f358c2b 177316b a080665 177316b 1551a80 177316b f358c2b 177316b f578dc2 177316b f578dc2 0ce3ca4 f578dc2 177316b 425b8b6 177316b 3e49974 177316b f578dc2 fe66c9d f358c2b 177316b 350d95c 177316b f358c2b f578dc2 350d95c f578dc2 177316b 350d95c 177316b 3e49974 177316b 350d95c 177316b 3e49974 177316b 350d95c 177316b 3e49974 177316b 350d95c 177316b 3e49974 177316b 350d95c 177316b 3e49974 177316b 350d95c 177316b fe66c9d 177316b fe66c9d 350d95c 3e49974 350d95c 177316b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import spaces
import gradio as gr
from gradio_imageslider import ImageSlider
import torch
from hidiffusion import apply_hidiffusion
from diffusers import (
ControlNetModel,
StableDiffusionXLControlNetImg2ImgPipeline,
DDIMScheduler,
)
from controlnet_aux import AnylineDetector
from compel import Compel, ReturnedEmbeddingsType
from PIL import Image
import os
import time
import numpy as np
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
print(f"device: {device}")
print(f"dtype: {dtype}")
print(f"low memory: {LOW_MEMORY}")
model = "stabilityai/stable-diffusion-xl-base-1.0"
# model = "stabilityai/sdxl-turbo"
# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
# controlnet = ControlNetModel.from_pretrained(
# "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
# )
controlnet = ControlNetModel.from_pretrained(
"TheMistoAI/MistoLine",
torch_dtype=torch.float16,
revision="refs/pr/3",
variant="fp16",
)
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
model,
controlnet=controlnet,
torch_dtype=dtype,
variant="fp16",
use_safetensors=True,
scheduler=scheduler,
)
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
)
pipe = pipe.to(device)
if not IS_SPACES_ZERO:
apply_hidiffusion(pipe)
# pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
anyline = AnylineDetector.from_pretrained(
"TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline"
).to(device)
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
pad_w = 0
pad_h = (w - h) // 2
new_image.paste(image, (0, pad_h))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
pad_w = (h - w) // 2
pad_h = 0
new_image.paste(image, (pad_w, 0))
return new_image
@spaces.GPU
def predict(
input_image,
prompt,
negative_prompt,
seed,
guidance_scale=8.5,
scale=2,
controlnet_conditioning_scale=0.5,
strength=1.0,
controlnet_start=0.0,
controlnet_end=1.0,
progress=gr.Progress(track_tqdm=True),
):
if IS_SPACES_ZERO:
apply_hidiffusion(pipe)
if input_image is None:
raise gr.Error("Please upload an image.")
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
conditioning, pooled = compel([prompt, negative_prompt])
generator = torch.manual_seed(seed)
last_time = time.time()
anyline_image = anyline(padded_image, detect_resolution=1024)
images = pipe(
image=padded_image,
control_image=anyline_image,
strength=strength,
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
width=1024 * scale,
height=1024 * scale,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
controlnet_start=float(controlnet_start),
controlnet_end=float(controlnet_end),
generator=generator,
num_inference_steps=30,
guidance_scale=guidance_scale,
eta=1.0,
)
print(f"Time taken: {time.time() - last_time}")
return (padded_image, images.images[0]), padded_image, anyline_image
css = """
#intro{
# max-width: 32rem;
# text-align: center;
# margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# Enhance This
### HiDiffusion SDXL
[HiDiffusion](https://github.com/megvii-research/HiDiffusion) enables higher-resolution image generation.
You can upload an initial image and prompt to generate an enhanced version.
SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLine)
[Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-HiDiffusion-SDXL?duplicate=true) to avoid the queue.
<small>
<b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!
</small>
""",
elem_id="intro",
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Input Image")
prompt = gr.Textbox(
label="Prompt",
info="The prompt is very important to get the desired results. Please try to describe the image as best as you can. Accepts Compel Syntax",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
)
seed = gr.Slider(
minimum=0,
maximum=2**64 - 1,
value=1415926535897932,
step=1,
label="Seed",
randomize=True,
)
with gr.Accordion(label="Advanced", open=False):
guidance_scale = gr.Slider(
minimum=0,
maximum=50,
value=8.5,
step=0.001,
label="Guidance Scale",
)
scale = gr.Slider(
minimum=1,
maximum=5,
value=2,
step=1,
label="Magnification Scale",
interactive=not IS_SPACE,
)
controlnet_conditioning_scale = gr.Slider(
minimum=0,
maximum=1,
step=0.001,
value=0.5,
label="ControlNet Conditioning Scale",
)
strength = gr.Slider(
minimum=0,
maximum=1,
step=0.001,
value=1,
label="Strength",
)
controlnet_start = gr.Slider(
minimum=0,
maximum=1,
step=0.001,
value=0.0,
label="ControlNet Start",
)
controlnet_end = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.001,
value=1.0,
label="ControlNet End",
)
btn = gr.Button()
with gr.Column(scale=2):
with gr.Group():
image_slider = ImageSlider(position=0.5)
with gr.Row():
padded_image = gr.Image(type="pil", label="Padded Image")
anyline_image = gr.Image(type="pil", label="Anyline Image")
inputs = [
image_input,
prompt,
negative_prompt,
seed,
guidance_scale,
scale,
controlnet_conditioning_scale,
strength,
controlnet_start,
controlnet_end,
]
outputs = [image_slider, padded_image, anyline_image]
btn.click(lambda x: None, inputs=None, outputs=image_slider).then(
fn=predict, inputs=inputs, outputs=outputs
)
gr.Examples(
fn=predict,
inputs=inputs,
outputs=outputs,
examples=[
[
"./examples/lara.jpeg",
"photography of lara croft 8k high definition award winning",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
5436236241,
8.5,
2,
0.8,
1.0,
0.0,
1.0,
],
[
"./examples/cybetruck.jpeg",
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
383472451451,
8.5,
2,
0.8,
0.8,
0.0,
1.0,
],
[
"./examples/jesus.png",
"a photorealistic painting of Jesus Christ, 4k high definition",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
13317204146129588000,
8.5,
2,
0.8,
0.8,
0.0,
1.0,
],
[
"./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg",
"A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
5623124123512,
8.5,
2,
0.8,
0.8,
0.0,
1.0,
],
[
"./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg",
"a large red flower on a black background 4k high definition",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
23123412341234,
8.5,
2,
0.8,
0.8,
0.0,
1.0,
],
[
"./examples/huggingface.jpg",
"photo realistic huggingface human emoji costume, round, yellow, (human skin)+++ (human texture)+++",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic, emoji cartoon, drawing, pixelated",
12312353423,
15.206,
2,
0.364,
0.8,
0.0,
1.0,
],
],
cache_examples="lazy",
)
demo.queue(api_open=False)
demo.launch(show_api=False)
|