File size: 10,569 Bytes
177316b
 
 
 
 
 
 
 
 
 
f358c2b
177316b
 
 
 
 
 
9c8f346
425b8b6
177316b
 
 
 
 
 
 
 
 
 
 
 
f578dc2
177316b
 
f9b4389
 
 
177316b
f9b4389
 
 
 
177316b
 
 
 
 
 
 
 
 
9c8f346
177316b
 
 
 
 
 
 
 
9c8f346
 
98c3b25
 
c3dd0e2
f358c2b
 
 
 
9c8f346
177316b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350d95c
177316b
 
 
 
 
9c8f346
 
177316b
 
 
 
 
 
f358c2b
177316b
 
f358c2b
177316b
 
 
 
 
 
 
a080665
 
 
177316b
1551a80
177316b
 
 
 
f358c2b
177316b
 
 
 
 
 
 
 
 
 
 
 
 
 
f578dc2
177316b
f578dc2
0ce3ca4
 
f578dc2
177316b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425b8b6
177316b
 
 
 
 
 
 
 
 
 
3e49974
177316b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f578dc2
 
fe66c9d
 
f358c2b
177316b
 
 
 
 
 
 
350d95c
177316b
 
 
 
f358c2b
f578dc2
350d95c
f578dc2
177316b
 
350d95c
 
177316b
 
 
 
 
 
 
3e49974
177316b
350d95c
177316b
 
 
 
 
 
 
 
 
3e49974
177316b
350d95c
177316b
 
 
 
 
 
 
 
 
3e49974
177316b
350d95c
177316b
 
 
 
 
 
 
 
 
3e49974
177316b
350d95c
177316b
 
 
 
 
 
 
 
 
3e49974
177316b
350d95c
177316b
 
 
 
 
fe66c9d
177316b
fe66c9d
350d95c
3e49974
350d95c
177316b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import spaces
import gradio as gr
from gradio_imageslider import ImageSlider
import torch
from hidiffusion import apply_hidiffusion
from diffusers import (
    ControlNetModel,
    StableDiffusionXLControlNetImg2ImgPipeline,
    DDIMScheduler,
)
from controlnet_aux import AnylineDetector
from compel import Compel, ReturnedEmbeddingsType
from PIL import Image
import os
import time
import numpy as np

IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16

LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"

print(f"device: {device}")
print(f"dtype: {dtype}")
print(f"low memory: {LOW_MEMORY}")


model = "stabilityai/stable-diffusion-xl-base-1.0"
# model = "stabilityai/sdxl-turbo"
# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
# controlnet = ControlNetModel.from_pretrained(
#     "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
# )
controlnet = ControlNetModel.from_pretrained(
    "TheMistoAI/MistoLine",
    torch_dtype=torch.float16,
    revision="refs/pr/3",
    variant="fp16",
)
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
    model,
    controlnet=controlnet,
    torch_dtype=dtype,
    variant="fp16",
    use_safetensors=True,
    scheduler=scheduler,
)

compel = Compel(
    tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
    text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
    returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
    requires_pooled=[False, True],
)
pipe = pipe.to(device)

if not IS_SPACES_ZERO:
    apply_hidiffusion(pipe)
    # pipe.enable_xformers_memory_efficient_attention()
    pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()

anyline = AnylineDetector.from_pretrained(
    "TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline"
).to(device)


def pad_image(image):
    w, h = image.size
    if w == h:
        return image
    elif w > h:
        new_image = Image.new(image.mode, (w, w), (0, 0, 0))
        pad_w = 0
        pad_h = (w - h) // 2
        new_image.paste(image, (0, pad_h))
        return new_image
    else:
        new_image = Image.new(image.mode, (h, h), (0, 0, 0))
        pad_w = (h - w) // 2
        pad_h = 0
        new_image.paste(image, (pad_w, 0))
        return new_image


@spaces.GPU
def predict(
    input_image,
    prompt,
    negative_prompt,
    seed,
    guidance_scale=8.5,
    scale=2,
    controlnet_conditioning_scale=0.5,
    strength=1.0,
    controlnet_start=0.0,
    controlnet_end=1.0,
    progress=gr.Progress(track_tqdm=True),
):
    if IS_SPACES_ZERO:
        apply_hidiffusion(pipe)
    if input_image is None:
        raise gr.Error("Please upload an image.")
    padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
    conditioning, pooled = compel([prompt, negative_prompt])
    generator = torch.manual_seed(seed)
    last_time = time.time()
    anyline_image = anyline(padded_image, detect_resolution=1024)
    images = pipe(
        image=padded_image,
        control_image=anyline_image,
        strength=strength,
        prompt_embeds=conditioning[0:1],
        pooled_prompt_embeds=pooled[0:1],
        negative_prompt_embeds=conditioning[1:2],
        negative_pooled_prompt_embeds=pooled[1:2],
        width=1024 * scale,
        height=1024 * scale,
        controlnet_conditioning_scale=float(controlnet_conditioning_scale),
        controlnet_start=float(controlnet_start),
        controlnet_end=float(controlnet_end),
        generator=generator,
        num_inference_steps=30,
        guidance_scale=guidance_scale,
        eta=1.0,
    )
    print(f"Time taken: {time.time() - last_time}")
    return (padded_image, images.images[0]), padded_image, anyline_image


css = """
#intro{
    # max-width: 32rem;
    # text-align: center;
    # margin: 0 auto;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(
        """
# Enhance This  
### HiDiffusion SDXL

[HiDiffusion](https://github.com/megvii-research/HiDiffusion) enables higher-resolution image generation.  
You can upload an initial image and prompt to generate an enhanced version.   
SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLine)  
[Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-HiDiffusion-SDXL?duplicate=true) to avoid the queue.  

<small>
<b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!

</small>
        """,
        elem_id="intro",
    )
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="Input Image")
            prompt = gr.Textbox(
                label="Prompt",
                info="The prompt is very important to get the desired results. Please try to describe the image as best as you can. Accepts Compel Syntax",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
            )
            seed = gr.Slider(
                minimum=0,
                maximum=2**64 - 1,
                value=1415926535897932,
                step=1,
                label="Seed",
                randomize=True,
            )
            with gr.Accordion(label="Advanced", open=False):
                guidance_scale = gr.Slider(
                    minimum=0,
                    maximum=50,
                    value=8.5,
                    step=0.001,
                    label="Guidance Scale",
                )
                scale = gr.Slider(
                    minimum=1,
                    maximum=5,
                    value=2,
                    step=1,
                    label="Magnification Scale",
                    interactive=not IS_SPACE,
                )
                controlnet_conditioning_scale = gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.001,
                    value=0.5,
                    label="ControlNet Conditioning Scale",
                )
                strength = gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.001,
                    value=1,
                    label="Strength",
                )
                controlnet_start = gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.001,
                    value=0.0,
                    label="ControlNet Start",
                )
                controlnet_end = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    step=0.001,
                    value=1.0,
                    label="ControlNet End",
                )

            btn = gr.Button()
        with gr.Column(scale=2):
            with gr.Group():
                image_slider = ImageSlider(position=0.5)
            with gr.Row():
                padded_image = gr.Image(type="pil", label="Padded Image")
                anyline_image = gr.Image(type="pil", label="Anyline Image")
    inputs = [
        image_input,
        prompt,
        negative_prompt,
        seed,
        guidance_scale,
        scale,
        controlnet_conditioning_scale,
        strength,
        controlnet_start,
        controlnet_end,
    ]
    outputs = [image_slider, padded_image, anyline_image]
    btn.click(lambda x: None, inputs=None, outputs=image_slider).then(
        fn=predict, inputs=inputs, outputs=outputs
    )
    gr.Examples(
        fn=predict,
        inputs=inputs,
        outputs=outputs,
        examples=[
            [
                "./examples/lara.jpeg",
                "photography of lara croft 8k high definition award winning",
                "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
                5436236241,
                8.5,
                2,
                0.8,
                1.0,
                0.0,
                1.0,
            ],
            [
                "./examples/cybetruck.jpeg",
                "photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
                "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
                383472451451,
                8.5,
                2,
                0.8,
                0.8,
                0.0,
                1.0,
            ],
            [
                "./examples/jesus.png",
                "a photorealistic painting of Jesus Christ, 4k high definition",
                "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
                13317204146129588000,
                8.5,
                2,
                0.8,
                0.8,
                0.0,
                1.0,
            ],
            [
                "./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg",
                "A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow",
                "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
                5623124123512,
                8.5,
                2,
                0.8,
                0.8,
                0.0,
                1.0,
            ],
            [
                "./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg",
                "a large red flower on a black background 4k high definition",
                "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
                23123412341234,
                8.5,
                2,
                0.8,
                0.8,
                0.0,
                1.0,
            ],
            [
                "./examples/huggingface.jpg",
                "photo realistic huggingface human emoji costume, round, yellow, (human skin)+++ (human texture)+++",
                "blurry, ugly, duplicate, poorly drawn, deformed, mosaic, emoji cartoon,  drawing, pixelated",
                12312353423,
                15.206,
                2,
                0.364,
                0.8,
                0.0,
                1.0,
            ],
        ],
        cache_examples="lazy",
    )


demo.queue(api_open=False)
demo.launch(show_api=False)