radames's picture
fix
11e5217
raw
history blame
6.7 kB
import gradio as gr
import torch
from PIL import Image
import numpy as np
from diffusers import StableDiffusionDepth2ImgPipeline
from pathlib import Path
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
).to(device)
def pad_image(input_image):
pad_w, pad_h = (
np.max(((2, 2), np.ceil(np.array(input_image.size) / 64).astype(int)), axis=0)
* 64
- input_image.size
)
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode="edge")
)
w, h = im_padded.size
if w == h:
return im_padded
elif w > h:
new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
new_image.paste(im_padded, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
new_image.paste(im_padded, ((h - w) // 2, 0))
return new_image
def predict(
input_image,
prompt,
negative_prompt,
steps,
num_samples,
scale,
seed,
strength,
depth_image=None,
):
depth = None
if depth_image is not None:
depth_image = pad_image(depth_image)
depth_image = depth_image.resize((512, 512))
depth = np.array(depth_image.convert("L"))
depth = np.expand_dims(depth, 0)
depth = depth.astype(np.float32) / 255.0
depth = torch.from_numpy(depth)
init_image = input_image.convert("RGB")
image = pad_image(init_image) # resize to integer multiple of 32
image = image.resize((512, 512))
generator = None
if seed is not None:
generator = torch.Generator(device=device).manual_seed(seed)
result = dept2img(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
generator=generator,
depth_map=depth,
strength=strength,
num_inference_steps=steps,
guidance_scale=scale,
num_images_per_prompt=num_samples,
)
return result["images"]
css = """
#gallery .fixed-height {
max-height: unset;
}
"""
with gr.Blocks(css=css) as block:
with gr.Row():
with gr.Column():
gr.Markdown("## Stable Diffusion 2 Depth2Img")
gr.HTML(
"<p><a href='https://huggingface.co/spaces/radames/stable-diffusion-depth2img?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>"
)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
with gr.Accordion("Depth Image Optional", open=False):
depth_image = gr.Image(type="pil")
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced Options", open=False):
num_samples = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1
)
steps = gr.Slider(
label="Steps", minimum=1, maximum=50, value=50, step=1
)
scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30.0,
value=9.0,
step=0.1,
)
strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
with gr.Column(scale=2):
with gr.Row():
gallery = gr.Gallery(
label="Generated Images",
show_label=False,
elem_id="gallery",
)
gr.Examples(
examples=[
[
"./examples/baby.jpg",
"high definition photo of a baby astronaut space walking at the international space station with earth seeing from above in the background",
"",
50,
4,
9.0,
123123123,
0.8,
None,
],
[
"./examples/gol.jpg",
"professional photo of a Elmo jumping between two high rises, beautiful colorful city landscape in the background",
"",
50,
4,
9.0,
1734133747,
0.9,
None,
],
[
"./examples/bag.jpg",
"a photo of a bag of cookies in the bathroom",
"low light, dark, blurry",
50,
4,
9.0,
1734133747,
0.9,
"./examples/depth.jpg",
],
[
"./examples/smile_face.jpg",
"a hand holding a very spherical orange",
"low light, dark, blurry",
50,
4,
6.0,
961736534,
0.5,
"./examples/smile_depth.jpg",
],
],
inputs=[
input_image,
prompt,
negative_prompt,
steps,
num_samples,
scale,
seed,
strength,
depth_image,
],
outputs=[gallery],
fn=predict,
cache_examples=True,
)
run_button.click(
fn=predict,
inputs=[
input_image,
prompt,
negative_prompt,
steps,
num_samples,
scale,
seed,
strength,
depth_image,
],
outputs=[gallery],
)
block.queue(api_open=False)
block.launch(show_api=False)