Spaces:
Paused
Paused
File size: 1,419 Bytes
a5e07db 4260b70 a5e07db f2a669d a5e07db f2a669d a5e07db eb20d50 a5e07db eb20d50 a5e07db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from langchain import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain.document_loaders import BSHTMLLoader, DirectoryLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from transformers import AutoTokenizer
bshtml_dir_loader = DirectoryLoader('./data/', loader_cls=BSHTMLLoader)
data = bshtml_dir_loader.load()
bloomz_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-1b7")
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenizer,
chunk_size=100,
chunk_overlap=0,
separator="\n")
documents = text_splitter.split_documents(data)
embeddings = HuggingFaceEmbeddings()
llm = HuggingFacePipeline.from_model_id(
model_id="bigscience/bloomz-1b7",
task="text-generation",
model_kwargs={"temperature" : 0, "max_length" : 500})
vectordb = Chroma.from_documents(documents=documents, embedding=embeddings)
doc_retriever = vectordb.as_retriever()
shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)
def query(query):
shakespeare_qa.run(query)
iface = gr.Interface(fn=query, inputs="text", outputs="text")
iface.launch()
|