|
|
|
|
|
import json |
|
import logging |
|
import mimetypes |
|
import os |
|
import shutil |
|
|
|
import uuid |
|
from datetime import datetime |
|
from pathlib import Path |
|
from typing import Iterator, Optional, Sequence, Union |
|
|
|
from fastapi import Depends, FastAPI, File, Form, HTTPException, UploadFile, status |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from pydantic import BaseModel |
|
import tiktoken |
|
|
|
|
|
from open_webui.storage.provider import Storage |
|
from open_webui.apps.webui.models.knowledge import Knowledges |
|
from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT |
|
|
|
|
|
from open_webui.apps.retrieval.loaders.main import Loader |
|
|
|
|
|
from open_webui.apps.retrieval.web.main import SearchResult |
|
from open_webui.apps.retrieval.web.utils import get_web_loader |
|
from open_webui.apps.retrieval.web.brave import search_brave |
|
from open_webui.apps.retrieval.web.duckduckgo import search_duckduckgo |
|
from open_webui.apps.retrieval.web.google_pse import search_google_pse |
|
from open_webui.apps.retrieval.web.jina_search import search_jina |
|
from open_webui.apps.retrieval.web.searchapi import search_searchapi |
|
from open_webui.apps.retrieval.web.searxng import search_searxng |
|
from open_webui.apps.retrieval.web.serper import search_serper |
|
from open_webui.apps.retrieval.web.serply import search_serply |
|
from open_webui.apps.retrieval.web.serpstack import search_serpstack |
|
from open_webui.apps.retrieval.web.tavily import search_tavily |
|
|
|
|
|
from open_webui.apps.retrieval.utils import ( |
|
get_embedding_function, |
|
get_model_path, |
|
query_collection, |
|
query_collection_with_hybrid_search, |
|
query_doc, |
|
query_doc_with_hybrid_search, |
|
) |
|
|
|
from open_webui.apps.webui.models.files import Files |
|
from open_webui.config import ( |
|
BRAVE_SEARCH_API_KEY, |
|
TIKTOKEN_ENCODING_NAME, |
|
RAG_TEXT_SPLITTER, |
|
CHUNK_OVERLAP, |
|
CHUNK_SIZE, |
|
CONTENT_EXTRACTION_ENGINE, |
|
CORS_ALLOW_ORIGIN, |
|
ENABLE_RAG_HYBRID_SEARCH, |
|
ENABLE_RAG_LOCAL_WEB_FETCH, |
|
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, |
|
ENABLE_RAG_WEB_SEARCH, |
|
ENV, |
|
GOOGLE_PSE_API_KEY, |
|
GOOGLE_PSE_ENGINE_ID, |
|
PDF_EXTRACT_IMAGES, |
|
RAG_EMBEDDING_ENGINE, |
|
RAG_EMBEDDING_MODEL, |
|
RAG_EMBEDDING_MODEL_AUTO_UPDATE, |
|
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, |
|
RAG_EMBEDDING_BATCH_SIZE, |
|
RAG_FILE_MAX_COUNT, |
|
RAG_FILE_MAX_SIZE, |
|
RAG_OPENAI_API_BASE_URL, |
|
RAG_OPENAI_API_KEY, |
|
RAG_RELEVANCE_THRESHOLD, |
|
RAG_RERANKING_MODEL, |
|
RAG_RERANKING_MODEL_AUTO_UPDATE, |
|
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, |
|
DEFAULT_RAG_TEMPLATE, |
|
RAG_TEMPLATE, |
|
RAG_TOP_K, |
|
RAG_WEB_SEARCH_CONCURRENT_REQUESTS, |
|
RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, |
|
RAG_WEB_SEARCH_ENGINE, |
|
RAG_WEB_SEARCH_RESULT_COUNT, |
|
SEARCHAPI_API_KEY, |
|
SEARCHAPI_ENGINE, |
|
SEARXNG_QUERY_URL, |
|
SERPER_API_KEY, |
|
SERPLY_API_KEY, |
|
SERPSTACK_API_KEY, |
|
SERPSTACK_HTTPS, |
|
TAVILY_API_KEY, |
|
TIKA_SERVER_URL, |
|
UPLOAD_DIR, |
|
YOUTUBE_LOADER_LANGUAGE, |
|
AppConfig, |
|
) |
|
from open_webui.constants import ERROR_MESSAGES |
|
from open_webui.env import SRC_LOG_LEVELS, DEVICE_TYPE, DOCKER |
|
from open_webui.utils.misc import ( |
|
calculate_sha256, |
|
calculate_sha256_string, |
|
extract_folders_after_data_docs, |
|
sanitize_filename, |
|
) |
|
from open_webui.utils.utils import get_admin_user, get_verified_user |
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter |
|
from langchain_community.document_loaders import ( |
|
YoutubeLoader, |
|
) |
|
from langchain_core.documents import Document |
|
|
|
|
|
log = logging.getLogger(__name__) |
|
log.setLevel(SRC_LOG_LEVELS["RAG"]) |
|
|
|
app = FastAPI(docs_url="/docs" if ENV == "dev" else None, openapi_url="/openapi.json" if ENV == "dev" else None, redoc_url=None) |
|
|
|
app.state.config = AppConfig() |
|
|
|
app.state.config.TOP_K = RAG_TOP_K |
|
app.state.config.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD |
|
app.state.config.FILE_MAX_SIZE = RAG_FILE_MAX_SIZE |
|
app.state.config.FILE_MAX_COUNT = RAG_FILE_MAX_COUNT |
|
|
|
app.state.config.ENABLE_RAG_HYBRID_SEARCH = ENABLE_RAG_HYBRID_SEARCH |
|
app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = ( |
|
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION |
|
) |
|
|
|
app.state.config.CONTENT_EXTRACTION_ENGINE = CONTENT_EXTRACTION_ENGINE |
|
app.state.config.TIKA_SERVER_URL = TIKA_SERVER_URL |
|
|
|
app.state.config.TEXT_SPLITTER = RAG_TEXT_SPLITTER |
|
app.state.config.TIKTOKEN_ENCODING_NAME = TIKTOKEN_ENCODING_NAME |
|
|
|
app.state.config.CHUNK_SIZE = CHUNK_SIZE |
|
app.state.config.CHUNK_OVERLAP = CHUNK_OVERLAP |
|
|
|
app.state.config.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE |
|
app.state.config.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL |
|
app.state.config.RAG_EMBEDDING_BATCH_SIZE = RAG_EMBEDDING_BATCH_SIZE |
|
app.state.config.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL |
|
app.state.config.RAG_TEMPLATE = RAG_TEMPLATE |
|
|
|
app.state.config.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL |
|
app.state.config.OPENAI_API_KEY = RAG_OPENAI_API_KEY |
|
|
|
app.state.config.PDF_EXTRACT_IMAGES = PDF_EXTRACT_IMAGES |
|
|
|
app.state.config.YOUTUBE_LOADER_LANGUAGE = YOUTUBE_LOADER_LANGUAGE |
|
app.state.YOUTUBE_LOADER_TRANSLATION = None |
|
|
|
|
|
app.state.config.ENABLE_RAG_WEB_SEARCH = ENABLE_RAG_WEB_SEARCH |
|
app.state.config.RAG_WEB_SEARCH_ENGINE = RAG_WEB_SEARCH_ENGINE |
|
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST = RAG_WEB_SEARCH_DOMAIN_FILTER_LIST |
|
|
|
app.state.config.SEARXNG_QUERY_URL = SEARXNG_QUERY_URL |
|
app.state.config.GOOGLE_PSE_API_KEY = GOOGLE_PSE_API_KEY |
|
app.state.config.GOOGLE_PSE_ENGINE_ID = GOOGLE_PSE_ENGINE_ID |
|
app.state.config.BRAVE_SEARCH_API_KEY = BRAVE_SEARCH_API_KEY |
|
app.state.config.SERPSTACK_API_KEY = SERPSTACK_API_KEY |
|
app.state.config.SERPSTACK_HTTPS = SERPSTACK_HTTPS |
|
app.state.config.SERPER_API_KEY = SERPER_API_KEY |
|
app.state.config.SERPLY_API_KEY = SERPLY_API_KEY |
|
app.state.config.TAVILY_API_KEY = TAVILY_API_KEY |
|
app.state.config.SEARCHAPI_API_KEY = SEARCHAPI_API_KEY |
|
app.state.config.SEARCHAPI_ENGINE = SEARCHAPI_ENGINE |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = RAG_WEB_SEARCH_RESULT_COUNT |
|
app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = RAG_WEB_SEARCH_CONCURRENT_REQUESTS |
|
|
|
|
|
def update_embedding_model( |
|
embedding_model: str, |
|
auto_update: bool = False, |
|
): |
|
if embedding_model and app.state.config.RAG_EMBEDDING_ENGINE == "": |
|
from sentence_transformers import SentenceTransformer |
|
|
|
app.state.sentence_transformer_ef = SentenceTransformer( |
|
get_model_path(embedding_model, auto_update), |
|
device=DEVICE_TYPE, |
|
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, |
|
) |
|
else: |
|
app.state.sentence_transformer_ef = None |
|
|
|
|
|
def update_reranking_model( |
|
reranking_model: str, |
|
auto_update: bool = False, |
|
): |
|
if reranking_model: |
|
if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]): |
|
try: |
|
from open_webui.apps.retrieval.models.colbert import ColBERT |
|
|
|
app.state.sentence_transformer_rf = ColBERT( |
|
get_model_path(reranking_model, auto_update), |
|
env="docker" if DOCKER else None, |
|
) |
|
except Exception as e: |
|
log.error(f"ColBERT: {e}") |
|
app.state.sentence_transformer_rf = None |
|
app.state.config.ENABLE_RAG_HYBRID_SEARCH = False |
|
else: |
|
import sentence_transformers |
|
|
|
try: |
|
app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder( |
|
get_model_path(reranking_model, auto_update), |
|
device=DEVICE_TYPE, |
|
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, |
|
) |
|
except: |
|
log.error("CrossEncoder error") |
|
app.state.sentence_transformer_rf = None |
|
app.state.config.ENABLE_RAG_HYBRID_SEARCH = False |
|
else: |
|
app.state.sentence_transformer_rf = None |
|
|
|
|
|
update_embedding_model( |
|
app.state.config.RAG_EMBEDDING_MODEL, |
|
RAG_EMBEDDING_MODEL_AUTO_UPDATE, |
|
) |
|
|
|
update_reranking_model( |
|
app.state.config.RAG_RERANKING_MODEL, |
|
RAG_RERANKING_MODEL_AUTO_UPDATE, |
|
) |
|
|
|
|
|
app.state.EMBEDDING_FUNCTION = get_embedding_function( |
|
app.state.config.RAG_EMBEDDING_ENGINE, |
|
app.state.config.RAG_EMBEDDING_MODEL, |
|
app.state.sentence_transformer_ef, |
|
app.state.config.OPENAI_API_KEY, |
|
app.state.config.OPENAI_API_BASE_URL, |
|
app.state.config.RAG_EMBEDDING_BATCH_SIZE, |
|
) |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=CORS_ALLOW_ORIGIN, |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
class CollectionNameForm(BaseModel): |
|
collection_name: Optional[str] = None |
|
|
|
|
|
class ProcessUrlForm(CollectionNameForm): |
|
url: str |
|
|
|
|
|
class SearchForm(CollectionNameForm): |
|
query: str |
|
|
|
|
|
@app.get("/") |
|
async def get_status(): |
|
return { |
|
"status": True, |
|
"chunk_size": app.state.config.CHUNK_SIZE, |
|
"chunk_overlap": app.state.config.CHUNK_OVERLAP, |
|
"template": app.state.config.RAG_TEMPLATE, |
|
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, |
|
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL, |
|
"reranking_model": app.state.config.RAG_RERANKING_MODEL, |
|
"embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE, |
|
} |
|
|
|
|
|
@app.get("/embedding") |
|
async def get_embedding_config(user=Depends(get_admin_user)): |
|
return { |
|
"status": True, |
|
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, |
|
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL, |
|
"embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE, |
|
"openai_config": { |
|
"url": app.state.config.OPENAI_API_BASE_URL, |
|
"key": app.state.config.OPENAI_API_KEY, |
|
}, |
|
} |
|
|
|
|
|
@app.get("/reranking") |
|
async def get_reraanking_config(user=Depends(get_admin_user)): |
|
return { |
|
"status": True, |
|
"reranking_model": app.state.config.RAG_RERANKING_MODEL, |
|
} |
|
|
|
|
|
class OpenAIConfigForm(BaseModel): |
|
url: str |
|
key: str |
|
|
|
|
|
class EmbeddingModelUpdateForm(BaseModel): |
|
openai_config: Optional[OpenAIConfigForm] = None |
|
embedding_engine: str |
|
embedding_model: str |
|
embedding_batch_size: Optional[int] = 1 |
|
|
|
|
|
@app.post("/embedding/update") |
|
async def update_embedding_config( |
|
form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user) |
|
): |
|
log.info( |
|
f"Updating embedding model: {app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}" |
|
) |
|
try: |
|
app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine |
|
app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model |
|
|
|
if app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]: |
|
if form_data.openai_config is not None: |
|
app.state.config.OPENAI_API_BASE_URL = form_data.openai_config.url |
|
app.state.config.OPENAI_API_KEY = form_data.openai_config.key |
|
app.state.config.RAG_EMBEDDING_BATCH_SIZE = form_data.embedding_batch_size |
|
|
|
update_embedding_model(app.state.config.RAG_EMBEDDING_MODEL) |
|
|
|
app.state.EMBEDDING_FUNCTION = get_embedding_function( |
|
app.state.config.RAG_EMBEDDING_ENGINE, |
|
app.state.config.RAG_EMBEDDING_MODEL, |
|
app.state.sentence_transformer_ef, |
|
app.state.config.OPENAI_API_KEY, |
|
app.state.config.OPENAI_API_BASE_URL, |
|
app.state.config.RAG_EMBEDDING_BATCH_SIZE, |
|
) |
|
|
|
return { |
|
"status": True, |
|
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, |
|
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL, |
|
"embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE, |
|
"openai_config": { |
|
"url": app.state.config.OPENAI_API_BASE_URL, |
|
"key": app.state.config.OPENAI_API_KEY, |
|
}, |
|
} |
|
except Exception as e: |
|
log.exception(f"Problem updating embedding model: {e}") |
|
raise HTTPException( |
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
class RerankingModelUpdateForm(BaseModel): |
|
reranking_model: str |
|
|
|
|
|
@app.post("/reranking/update") |
|
async def update_reranking_config( |
|
form_data: RerankingModelUpdateForm, user=Depends(get_admin_user) |
|
): |
|
log.info( |
|
f"Updating reranking model: {app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}" |
|
) |
|
try: |
|
app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model |
|
|
|
update_reranking_model(app.state.config.RAG_RERANKING_MODEL, True) |
|
|
|
return { |
|
"status": True, |
|
"reranking_model": app.state.config.RAG_RERANKING_MODEL, |
|
} |
|
except Exception as e: |
|
log.exception(f"Problem updating reranking model: {e}") |
|
raise HTTPException( |
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
@app.get("/config") |
|
async def get_rag_config(user=Depends(get_admin_user)): |
|
return { |
|
"status": True, |
|
"pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES, |
|
"content_extraction": { |
|
"engine": app.state.config.CONTENT_EXTRACTION_ENGINE, |
|
"tika_server_url": app.state.config.TIKA_SERVER_URL, |
|
}, |
|
"chunk": { |
|
"text_splitter": app.state.config.TEXT_SPLITTER, |
|
"chunk_size": app.state.config.CHUNK_SIZE, |
|
"chunk_overlap": app.state.config.CHUNK_OVERLAP, |
|
}, |
|
"file": { |
|
"max_size": app.state.config.FILE_MAX_SIZE, |
|
"max_count": app.state.config.FILE_MAX_COUNT, |
|
}, |
|
"youtube": { |
|
"language": app.state.config.YOUTUBE_LOADER_LANGUAGE, |
|
"translation": app.state.YOUTUBE_LOADER_TRANSLATION, |
|
}, |
|
"web": { |
|
"ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, |
|
"search": { |
|
"enabled": app.state.config.ENABLE_RAG_WEB_SEARCH, |
|
"engine": app.state.config.RAG_WEB_SEARCH_ENGINE, |
|
"searxng_query_url": app.state.config.SEARXNG_QUERY_URL, |
|
"google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY, |
|
"google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID, |
|
"brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY, |
|
"serpstack_api_key": app.state.config.SERPSTACK_API_KEY, |
|
"serpstack_https": app.state.config.SERPSTACK_HTTPS, |
|
"serper_api_key": app.state.config.SERPER_API_KEY, |
|
"serply_api_key": app.state.config.SERPLY_API_KEY, |
|
"tavily_api_key": app.state.config.TAVILY_API_KEY, |
|
"searchapi_api_key": app.state.config.SEARCHAPI_API_KEY, |
|
"seaarchapi_engine": app.state.config.SEARCHAPI_ENGINE, |
|
"result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
"concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, |
|
}, |
|
}, |
|
} |
|
|
|
|
|
class FileConfig(BaseModel): |
|
max_size: Optional[int] = None |
|
max_count: Optional[int] = None |
|
|
|
|
|
class ContentExtractionConfig(BaseModel): |
|
engine: str = "" |
|
tika_server_url: Optional[str] = None |
|
|
|
|
|
class ChunkParamUpdateForm(BaseModel): |
|
text_splitter: Optional[str] = None |
|
chunk_size: int |
|
chunk_overlap: int |
|
|
|
|
|
class YoutubeLoaderConfig(BaseModel): |
|
language: list[str] |
|
translation: Optional[str] = None |
|
|
|
|
|
class WebSearchConfig(BaseModel): |
|
enabled: bool |
|
engine: Optional[str] = None |
|
searxng_query_url: Optional[str] = None |
|
google_pse_api_key: Optional[str] = None |
|
google_pse_engine_id: Optional[str] = None |
|
brave_search_api_key: Optional[str] = None |
|
serpstack_api_key: Optional[str] = None |
|
serpstack_https: Optional[bool] = None |
|
serper_api_key: Optional[str] = None |
|
serply_api_key: Optional[str] = None |
|
tavily_api_key: Optional[str] = None |
|
searchapi_api_key: Optional[str] = None |
|
searchapi_engine: Optional[str] = None |
|
result_count: Optional[int] = None |
|
concurrent_requests: Optional[int] = None |
|
|
|
|
|
class WebConfig(BaseModel): |
|
search: WebSearchConfig |
|
web_loader_ssl_verification: Optional[bool] = None |
|
|
|
|
|
class ConfigUpdateForm(BaseModel): |
|
pdf_extract_images: Optional[bool] = None |
|
file: Optional[FileConfig] = None |
|
content_extraction: Optional[ContentExtractionConfig] = None |
|
chunk: Optional[ChunkParamUpdateForm] = None |
|
youtube: Optional[YoutubeLoaderConfig] = None |
|
web: Optional[WebConfig] = None |
|
|
|
|
|
@app.post("/config/update") |
|
async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)): |
|
app.state.config.PDF_EXTRACT_IMAGES = ( |
|
form_data.pdf_extract_images |
|
if form_data.pdf_extract_images is not None |
|
else app.state.config.PDF_EXTRACT_IMAGES |
|
) |
|
|
|
if form_data.file is not None: |
|
app.state.config.FILE_MAX_SIZE = form_data.file.max_size |
|
app.state.config.FILE_MAX_COUNT = form_data.file.max_count |
|
|
|
if form_data.content_extraction is not None: |
|
log.info(f"Updating text settings: {form_data.content_extraction}") |
|
app.state.config.CONTENT_EXTRACTION_ENGINE = form_data.content_extraction.engine |
|
app.state.config.TIKA_SERVER_URL = form_data.content_extraction.tika_server_url |
|
|
|
if form_data.chunk is not None: |
|
app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter |
|
app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size |
|
app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap |
|
|
|
if form_data.youtube is not None: |
|
app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language |
|
app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation |
|
|
|
if form_data.web is not None: |
|
app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = ( |
|
form_data.web.web_loader_ssl_verification |
|
) |
|
|
|
app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled |
|
app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine |
|
app.state.config.SEARXNG_QUERY_URL = form_data.web.search.searxng_query_url |
|
app.state.config.GOOGLE_PSE_API_KEY = form_data.web.search.google_pse_api_key |
|
app.state.config.GOOGLE_PSE_ENGINE_ID = ( |
|
form_data.web.search.google_pse_engine_id |
|
) |
|
app.state.config.BRAVE_SEARCH_API_KEY = ( |
|
form_data.web.search.brave_search_api_key |
|
) |
|
app.state.config.SERPSTACK_API_KEY = form_data.web.search.serpstack_api_key |
|
app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https |
|
app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key |
|
app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key |
|
app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key |
|
app.state.config.SEARCHAPI_API_KEY = form_data.web.search.searchapi_api_key |
|
app.state.config.SEARCHAPI_ENGINE = form_data.web.search.searchapi_engine |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = form_data.web.search.result_count |
|
app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = ( |
|
form_data.web.search.concurrent_requests |
|
) |
|
|
|
return { |
|
"status": True, |
|
"pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES, |
|
"file": { |
|
"max_size": app.state.config.FILE_MAX_SIZE, |
|
"max_count": app.state.config.FILE_MAX_COUNT, |
|
}, |
|
"content_extraction": { |
|
"engine": app.state.config.CONTENT_EXTRACTION_ENGINE, |
|
"tika_server_url": app.state.config.TIKA_SERVER_URL, |
|
}, |
|
"chunk": { |
|
"text_splitter": app.state.config.TEXT_SPLITTER, |
|
"chunk_size": app.state.config.CHUNK_SIZE, |
|
"chunk_overlap": app.state.config.CHUNK_OVERLAP, |
|
}, |
|
"youtube": { |
|
"language": app.state.config.YOUTUBE_LOADER_LANGUAGE, |
|
"translation": app.state.YOUTUBE_LOADER_TRANSLATION, |
|
}, |
|
"web": { |
|
"ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, |
|
"search": { |
|
"enabled": app.state.config.ENABLE_RAG_WEB_SEARCH, |
|
"engine": app.state.config.RAG_WEB_SEARCH_ENGINE, |
|
"searxng_query_url": app.state.config.SEARXNG_QUERY_URL, |
|
"google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY, |
|
"google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID, |
|
"brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY, |
|
"serpstack_api_key": app.state.config.SERPSTACK_API_KEY, |
|
"serpstack_https": app.state.config.SERPSTACK_HTTPS, |
|
"serper_api_key": app.state.config.SERPER_API_KEY, |
|
"serply_api_key": app.state.config.SERPLY_API_KEY, |
|
"serachapi_api_key": app.state.config.SEARCHAPI_API_KEY, |
|
"searchapi_engine": app.state.config.SEARCHAPI_ENGINE, |
|
"tavily_api_key": app.state.config.TAVILY_API_KEY, |
|
"result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
"concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, |
|
}, |
|
}, |
|
} |
|
|
|
|
|
@app.get("/template") |
|
async def get_rag_template(user=Depends(get_verified_user)): |
|
return { |
|
"status": True, |
|
"template": app.state.config.RAG_TEMPLATE, |
|
} |
|
|
|
|
|
@app.get("/query/settings") |
|
async def get_query_settings(user=Depends(get_admin_user)): |
|
return { |
|
"status": True, |
|
"template": app.state.config.RAG_TEMPLATE, |
|
"k": app.state.config.TOP_K, |
|
"r": app.state.config.RELEVANCE_THRESHOLD, |
|
"hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH, |
|
} |
|
|
|
|
|
class QuerySettingsForm(BaseModel): |
|
k: Optional[int] = None |
|
r: Optional[float] = None |
|
template: Optional[str] = None |
|
hybrid: Optional[bool] = None |
|
|
|
|
|
@app.post("/query/settings/update") |
|
async def update_query_settings( |
|
form_data: QuerySettingsForm, user=Depends(get_admin_user) |
|
): |
|
app.state.config.RAG_TEMPLATE = form_data.template |
|
app.state.config.TOP_K = form_data.k if form_data.k else 4 |
|
app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0 |
|
|
|
app.state.config.ENABLE_RAG_HYBRID_SEARCH = ( |
|
form_data.hybrid if form_data.hybrid else False |
|
) |
|
|
|
return { |
|
"status": True, |
|
"template": app.state.config.RAG_TEMPLATE, |
|
"k": app.state.config.TOP_K, |
|
"r": app.state.config.RELEVANCE_THRESHOLD, |
|
"hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def save_docs_to_vector_db( |
|
docs, |
|
collection_name, |
|
metadata: Optional[dict] = None, |
|
overwrite: bool = False, |
|
split: bool = True, |
|
add: bool = False, |
|
) -> bool: |
|
log.info(f"save_docs_to_vector_db {docs} {collection_name}") |
|
|
|
|
|
if metadata and "hash" in metadata: |
|
result = VECTOR_DB_CLIENT.query( |
|
collection_name=collection_name, |
|
filter={"hash": metadata["hash"]}, |
|
) |
|
|
|
if result is not None: |
|
existing_doc_ids = result.ids[0] |
|
if existing_doc_ids: |
|
log.info(f"Document with hash {metadata['hash']} already exists") |
|
raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT) |
|
|
|
if split: |
|
if app.state.config.TEXT_SPLITTER in ["", "character"]: |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=app.state.config.CHUNK_SIZE, |
|
chunk_overlap=app.state.config.CHUNK_OVERLAP, |
|
add_start_index=True, |
|
) |
|
elif app.state.config.TEXT_SPLITTER == "token": |
|
log.info( |
|
f"Using token text splitter: {app.state.config.TIKTOKEN_ENCODING_NAME}" |
|
) |
|
|
|
tiktoken.get_encoding(str(app.state.config.TIKTOKEN_ENCODING_NAME)) |
|
text_splitter = TokenTextSplitter( |
|
encoding_name=str(app.state.config.TIKTOKEN_ENCODING_NAME), |
|
chunk_size=app.state.config.CHUNK_SIZE, |
|
chunk_overlap=app.state.config.CHUNK_OVERLAP, |
|
add_start_index=True, |
|
) |
|
else: |
|
raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter")) |
|
|
|
docs = text_splitter.split_documents(docs) |
|
|
|
if len(docs) == 0: |
|
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT) |
|
|
|
texts = [doc.page_content for doc in docs] |
|
metadatas = [ |
|
{ |
|
**doc.metadata, |
|
**(metadata if metadata else {}), |
|
"embedding_config": json.dumps( |
|
{ |
|
"engine": app.state.config.RAG_EMBEDDING_ENGINE, |
|
"model": app.state.config.RAG_EMBEDDING_MODEL, |
|
} |
|
), |
|
} |
|
for doc in docs |
|
] |
|
|
|
|
|
|
|
for metadata in metadatas: |
|
for key, value in metadata.items(): |
|
if isinstance(value, datetime): |
|
metadata[key] = str(value) |
|
|
|
try: |
|
if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name): |
|
log.info(f"collection {collection_name} already exists") |
|
|
|
if overwrite: |
|
VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name) |
|
log.info(f"deleting existing collection {collection_name}") |
|
elif add is False: |
|
log.info( |
|
f"collection {collection_name} already exists, overwrite is False and add is False" |
|
) |
|
return True |
|
|
|
log.info(f"adding to collection {collection_name}") |
|
embedding_function = get_embedding_function( |
|
app.state.config.RAG_EMBEDDING_ENGINE, |
|
app.state.config.RAG_EMBEDDING_MODEL, |
|
app.state.sentence_transformer_ef, |
|
app.state.config.OPENAI_API_KEY, |
|
app.state.config.OPENAI_API_BASE_URL, |
|
app.state.config.RAG_EMBEDDING_BATCH_SIZE, |
|
) |
|
|
|
embeddings = embedding_function( |
|
list(map(lambda x: x.replace("\n", " "), texts)) |
|
) |
|
|
|
items = [ |
|
{ |
|
"id": str(uuid.uuid4()), |
|
"text": text, |
|
"vector": embeddings[idx], |
|
"metadata": metadatas[idx], |
|
} |
|
for idx, text in enumerate(texts) |
|
] |
|
|
|
VECTOR_DB_CLIENT.insert( |
|
collection_name=collection_name, |
|
items=items, |
|
) |
|
|
|
return True |
|
except Exception as e: |
|
log.exception(e) |
|
return False |
|
|
|
|
|
class ProcessFileForm(BaseModel): |
|
file_id: str |
|
content: Optional[str] = None |
|
collection_name: Optional[str] = None |
|
|
|
|
|
@app.post("/process/file") |
|
def process_file( |
|
form_data: ProcessFileForm, |
|
user=Depends(get_verified_user), |
|
): |
|
try: |
|
file = Files.get_file_by_id(form_data.file_id) |
|
|
|
collection_name = form_data.collection_name |
|
|
|
if collection_name is None: |
|
collection_name = f"file-{file.id}" |
|
|
|
if form_data.content: |
|
|
|
|
|
|
|
VECTOR_DB_CLIENT.delete( |
|
collection_name=f"file-{file.id}", |
|
filter={"file_id": file.id}, |
|
) |
|
|
|
docs = [ |
|
Document( |
|
page_content=form_data.content, |
|
metadata={ |
|
"name": file.meta.get("name", file.filename), |
|
"created_by": file.user_id, |
|
"file_id": file.id, |
|
**file.meta, |
|
}, |
|
) |
|
] |
|
|
|
text_content = form_data.content |
|
elif form_data.collection_name: |
|
|
|
|
|
|
|
result = VECTOR_DB_CLIENT.query( |
|
collection_name=f"file-{file.id}", filter={"file_id": file.id} |
|
) |
|
|
|
if result is not None and len(result.ids[0]) > 0: |
|
docs = [ |
|
Document( |
|
page_content=result.documents[0][idx], |
|
metadata=result.metadatas[0][idx], |
|
) |
|
for idx, id in enumerate(result.ids[0]) |
|
] |
|
else: |
|
docs = [ |
|
Document( |
|
page_content=file.data.get("content", ""), |
|
metadata={ |
|
"name": file.meta.get("name", file.filename), |
|
"created_by": file.user_id, |
|
"file_id": file.id, |
|
**file.meta, |
|
}, |
|
) |
|
] |
|
|
|
text_content = file.data.get("content", "") |
|
else: |
|
|
|
|
|
file_path = file.path |
|
if file_path: |
|
file_path = Storage.get_file(file_path) |
|
loader = Loader( |
|
engine=app.state.config.CONTENT_EXTRACTION_ENGINE, |
|
TIKA_SERVER_URL=app.state.config.TIKA_SERVER_URL, |
|
PDF_EXTRACT_IMAGES=app.state.config.PDF_EXTRACT_IMAGES, |
|
) |
|
docs = loader.load( |
|
file.filename, file.meta.get("content_type"), file_path |
|
) |
|
else: |
|
docs = [ |
|
Document( |
|
page_content=file.data.get("content", ""), |
|
metadata={ |
|
"name": file.filename, |
|
"created_by": file.user_id, |
|
"file_id": file.id, |
|
**file.meta, |
|
}, |
|
) |
|
] |
|
text_content = " ".join([doc.page_content for doc in docs]) |
|
|
|
log.debug(f"text_content: {text_content}") |
|
Files.update_file_data_by_id( |
|
file.id, |
|
{"content": text_content}, |
|
) |
|
|
|
hash = calculate_sha256_string(text_content) |
|
Files.update_file_hash_by_id(file.id, hash) |
|
|
|
try: |
|
result = save_docs_to_vector_db( |
|
docs=docs, |
|
collection_name=collection_name, |
|
metadata={ |
|
"file_id": file.id, |
|
"name": file.meta.get("name", file.filename), |
|
"hash": hash, |
|
}, |
|
add=(True if form_data.collection_name else False), |
|
) |
|
|
|
if result: |
|
Files.update_file_metadata_by_id( |
|
file.id, |
|
{ |
|
"collection_name": collection_name, |
|
}, |
|
) |
|
|
|
return { |
|
"status": True, |
|
"collection_name": collection_name, |
|
"filename": file.meta.get("name", file.filename), |
|
"content": text_content, |
|
} |
|
except Exception as e: |
|
raise e |
|
except Exception as e: |
|
log.exception(e) |
|
if "No pandoc was found" in str(e): |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED, |
|
) |
|
else: |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=str(e), |
|
) |
|
|
|
|
|
class ProcessTextForm(BaseModel): |
|
name: str |
|
content: str |
|
collection_name: Optional[str] = None |
|
|
|
|
|
@app.post("/process/text") |
|
def process_text( |
|
form_data: ProcessTextForm, |
|
user=Depends(get_verified_user), |
|
): |
|
collection_name = form_data.collection_name |
|
if collection_name is None: |
|
collection_name = calculate_sha256_string(form_data.content) |
|
|
|
docs = [ |
|
Document( |
|
page_content=form_data.content, |
|
metadata={"name": form_data.name, "created_by": user.id}, |
|
) |
|
] |
|
text_content = form_data.content |
|
log.debug(f"text_content: {text_content}") |
|
|
|
result = save_docs_to_vector_db(docs, collection_name) |
|
|
|
if result: |
|
return { |
|
"status": True, |
|
"collection_name": collection_name, |
|
"content": text_content, |
|
} |
|
else: |
|
raise HTTPException( |
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, |
|
detail=ERROR_MESSAGES.DEFAULT(), |
|
) |
|
|
|
|
|
@app.post("/process/youtube") |
|
def process_youtube_video(form_data: ProcessUrlForm, user=Depends(get_verified_user)): |
|
try: |
|
collection_name = form_data.collection_name |
|
if not collection_name: |
|
collection_name = calculate_sha256_string(form_data.url)[:63] |
|
|
|
loader = YoutubeLoader.from_youtube_url( |
|
form_data.url, |
|
add_video_info=True, |
|
language=app.state.config.YOUTUBE_LOADER_LANGUAGE, |
|
translation=app.state.YOUTUBE_LOADER_TRANSLATION, |
|
) |
|
docs = loader.load() |
|
content = " ".join([doc.page_content for doc in docs]) |
|
log.debug(f"text_content: {content}") |
|
save_docs_to_vector_db(docs, collection_name, overwrite=True) |
|
|
|
return { |
|
"status": True, |
|
"collection_name": collection_name, |
|
"filename": form_data.url, |
|
"file": { |
|
"data": { |
|
"content": content, |
|
}, |
|
"meta": { |
|
"name": form_data.url, |
|
}, |
|
}, |
|
} |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
@app.post("/process/web") |
|
def process_web(form_data: ProcessUrlForm, user=Depends(get_verified_user)): |
|
try: |
|
collection_name = form_data.collection_name |
|
if not collection_name: |
|
collection_name = calculate_sha256_string(form_data.url)[:63] |
|
|
|
loader = get_web_loader( |
|
form_data.url, |
|
verify_ssl=app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, |
|
requests_per_second=app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, |
|
) |
|
docs = loader.load() |
|
content = " ".join([doc.page_content for doc in docs]) |
|
log.debug(f"text_content: {content}") |
|
save_docs_to_vector_db(docs, collection_name, overwrite=True) |
|
|
|
return { |
|
"status": True, |
|
"collection_name": collection_name, |
|
"filename": form_data.url, |
|
"file": { |
|
"data": { |
|
"content": content, |
|
}, |
|
"meta": { |
|
"name": form_data.url, |
|
}, |
|
}, |
|
} |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
def search_web(engine: str, query: str) -> list[SearchResult]: |
|
"""Search the web using a search engine and return the results as a list of SearchResult objects. |
|
Will look for a search engine API key in environment variables in the following order: |
|
- SEARXNG_QUERY_URL |
|
- GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID |
|
- BRAVE_SEARCH_API_KEY |
|
- SERPSTACK_API_KEY |
|
- SERPER_API_KEY |
|
- SERPLY_API_KEY |
|
- TAVILY_API_KEY |
|
- SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`) |
|
Args: |
|
query (str): The query to search for |
|
""" |
|
|
|
|
|
if engine == "searxng": |
|
if app.state.config.SEARXNG_QUERY_URL: |
|
return search_searxng( |
|
app.state.config.SEARXNG_QUERY_URL, |
|
query, |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, |
|
) |
|
else: |
|
raise Exception("No SEARXNG_QUERY_URL found in environment variables") |
|
elif engine == "google_pse": |
|
if ( |
|
app.state.config.GOOGLE_PSE_API_KEY |
|
and app.state.config.GOOGLE_PSE_ENGINE_ID |
|
): |
|
return search_google_pse( |
|
app.state.config.GOOGLE_PSE_API_KEY, |
|
app.state.config.GOOGLE_PSE_ENGINE_ID, |
|
query, |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, |
|
) |
|
else: |
|
raise Exception( |
|
"No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables" |
|
) |
|
elif engine == "brave": |
|
if app.state.config.BRAVE_SEARCH_API_KEY: |
|
return search_brave( |
|
app.state.config.BRAVE_SEARCH_API_KEY, |
|
query, |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, |
|
) |
|
else: |
|
raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables") |
|
elif engine == "serpstack": |
|
if app.state.config.SERPSTACK_API_KEY: |
|
return search_serpstack( |
|
app.state.config.SERPSTACK_API_KEY, |
|
query, |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, |
|
https_enabled=app.state.config.SERPSTACK_HTTPS, |
|
) |
|
else: |
|
raise Exception("No SERPSTACK_API_KEY found in environment variables") |
|
elif engine == "serper": |
|
if app.state.config.SERPER_API_KEY: |
|
return search_serper( |
|
app.state.config.SERPER_API_KEY, |
|
query, |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, |
|
) |
|
else: |
|
raise Exception("No SERPER_API_KEY found in environment variables") |
|
elif engine == "serply": |
|
if app.state.config.SERPLY_API_KEY: |
|
return search_serply( |
|
app.state.config.SERPLY_API_KEY, |
|
query, |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, |
|
) |
|
else: |
|
raise Exception("No SERPLY_API_KEY found in environment variables") |
|
elif engine == "duckduckgo": |
|
return search_duckduckgo( |
|
query, |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, |
|
) |
|
elif engine == "tavily": |
|
if app.state.config.TAVILY_API_KEY: |
|
return search_tavily( |
|
app.state.config.TAVILY_API_KEY, |
|
query, |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
) |
|
else: |
|
raise Exception("No TAVILY_API_KEY found in environment variables") |
|
elif engine == "searchapi": |
|
if app.state.config.SEARCHAPI_API_KEY: |
|
return search_searchapi( |
|
app.state.config.SEARCHAPI_API_KEY, |
|
app.state.config.SEARCHAPI_ENGINE, |
|
query, |
|
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, |
|
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, |
|
) |
|
else: |
|
raise Exception("No SEARCHAPI_API_KEY found in environment variables") |
|
elif engine == "jina": |
|
return search_jina(query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT) |
|
else: |
|
raise Exception("No search engine API key found in environment variables") |
|
|
|
|
|
@app.post("/process/web/search") |
|
def process_web_search(form_data: SearchForm, user=Depends(get_verified_user)): |
|
try: |
|
logging.info( |
|
f"trying to web search with {app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}" |
|
) |
|
web_results = search_web( |
|
app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query |
|
) |
|
except Exception as e: |
|
log.exception(e) |
|
|
|
print(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e), |
|
) |
|
|
|
try: |
|
collection_name = form_data.collection_name |
|
if collection_name == "": |
|
collection_name = calculate_sha256_string(form_data.query)[:63] |
|
|
|
urls = [result.link for result in web_results] |
|
|
|
loader = get_web_loader(urls) |
|
docs = loader.load() |
|
|
|
save_docs_to_vector_db(docs, collection_name, overwrite=True) |
|
|
|
return { |
|
"status": True, |
|
"collection_name": collection_name, |
|
"filenames": urls, |
|
} |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
class QueryDocForm(BaseModel): |
|
collection_name: str |
|
query: str |
|
k: Optional[int] = None |
|
r: Optional[float] = None |
|
hybrid: Optional[bool] = None |
|
|
|
|
|
@app.post("/query/doc") |
|
def query_doc_handler( |
|
form_data: QueryDocForm, |
|
user=Depends(get_verified_user), |
|
): |
|
try: |
|
if app.state.config.ENABLE_RAG_HYBRID_SEARCH: |
|
return query_doc_with_hybrid_search( |
|
collection_name=form_data.collection_name, |
|
query=form_data.query, |
|
embedding_function=app.state.EMBEDDING_FUNCTION, |
|
k=form_data.k if form_data.k else app.state.config.TOP_K, |
|
reranking_function=app.state.sentence_transformer_rf, |
|
r=( |
|
form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD |
|
), |
|
) |
|
else: |
|
return query_doc( |
|
collection_name=form_data.collection_name, |
|
query=form_data.query, |
|
embedding_function=app.state.EMBEDDING_FUNCTION, |
|
k=form_data.k if form_data.k else app.state.config.TOP_K, |
|
) |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
class QueryCollectionsForm(BaseModel): |
|
collection_names: list[str] |
|
query: str |
|
k: Optional[int] = None |
|
r: Optional[float] = None |
|
hybrid: Optional[bool] = None |
|
|
|
|
|
@app.post("/query/collection") |
|
def query_collection_handler( |
|
form_data: QueryCollectionsForm, |
|
user=Depends(get_verified_user), |
|
): |
|
try: |
|
if app.state.config.ENABLE_RAG_HYBRID_SEARCH: |
|
return query_collection_with_hybrid_search( |
|
collection_names=form_data.collection_names, |
|
query=form_data.query, |
|
embedding_function=app.state.EMBEDDING_FUNCTION, |
|
k=form_data.k if form_data.k else app.state.config.TOP_K, |
|
reranking_function=app.state.sentence_transformer_rf, |
|
r=( |
|
form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD |
|
), |
|
) |
|
else: |
|
return query_collection( |
|
collection_names=form_data.collection_names, |
|
query=form_data.query, |
|
embedding_function=app.state.EMBEDDING_FUNCTION, |
|
k=form_data.k if form_data.k else app.state.config.TOP_K, |
|
) |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DeleteForm(BaseModel): |
|
collection_name: str |
|
file_id: str |
|
|
|
|
|
@app.post("/delete") |
|
def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)): |
|
try: |
|
if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name): |
|
file = Files.get_file_by_id(form_data.file_id) |
|
hash = file.hash |
|
|
|
VECTOR_DB_CLIENT.delete( |
|
collection_name=form_data.collection_name, |
|
metadata={"hash": hash}, |
|
) |
|
return {"status": True} |
|
else: |
|
return {"status": False} |
|
except Exception as e: |
|
log.exception(e) |
|
return {"status": False} |
|
|
|
|
|
@app.post("/reset/db") |
|
def reset_vector_db(user=Depends(get_admin_user)): |
|
VECTOR_DB_CLIENT.reset() |
|
Knowledges.delete_all_knowledge() |
|
|
|
|
|
@app.post("/reset/uploads") |
|
def reset_upload_dir(user=Depends(get_admin_user)) -> bool: |
|
folder = f"{UPLOAD_DIR}" |
|
try: |
|
|
|
if os.path.exists(folder): |
|
|
|
for filename in os.listdir(folder): |
|
file_path = os.path.join(folder, filename) |
|
try: |
|
if os.path.isfile(file_path) or os.path.islink(file_path): |
|
os.unlink(file_path) |
|
elif os.path.isdir(file_path): |
|
shutil.rmtree(file_path) |
|
except Exception as e: |
|
print(f"Failed to delete {file_path}. Reason: {e}") |
|
else: |
|
print(f"The directory {folder} does not exist") |
|
except Exception as e: |
|
print(f"Failed to process the directory {folder}. Reason: {e}") |
|
return True |
|
|
|
|
|
if ENV == "dev": |
|
|
|
@app.get("/ef") |
|
async def get_embeddings(): |
|
return {"result": app.state.EMBEDDING_FUNCTION("hello world")} |
|
|
|
@app.get("/ef/{text}") |
|
async def get_embeddings_text(text: str): |
|
return {"result": app.state.EMBEDDING_FUNCTION(text)} |
|
|