Spaces:
Sleeping
Sleeping
File size: 1,713 Bytes
0d599fc b5e285e 0d599fc 2a01cbf b5e285e 0d599fc 20115ca 0d599fc d75157f 0d599fc b5e285e 20115ca b5e285e 0d599fc b5e285e 0d599fc 20115ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification
from torchvision.transforms import Compose, Resize, ToTensor, Normalize, RandomHorizontalFlip, RandomRotation
from PIL import Image
from datasets import load_dataset
import traceback
# Load dataset to get labels
dataset = load_dataset("bentrevett/caltech-ucsd-birds-200-2011")
labels = dataset['train'].features['label'].names
# Load model and processor
model_name = "riyadifirman/klasifikasiburung"
processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
# Define image transformations
normalize = Normalize(mean=processor.image_mean, std=processor.image_std)
transform = Compose([
Resize((224, 224)),
RandomHorizontalFlip(),
RandomRotation(10),
ToTensor(),
normalize,
])
def predict(image):
try:
image = Image.fromarray(image)
inputs = transform(image).unsqueeze(0)
outputs = model(inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
predicted_class = labels[predicted_class_idx]
return predicted_class
except Exception as e:
# Menampilkan error
print("An error occurred:", e)
print(traceback.format_exc()) # Ini akan print error secara detail
return "An error occurred while processing your request."
# Create Gradio interface
interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="numpy"),
outputs="text",
title="Bird Classification",
description="Upload an image of a bird to classify it."
)
if __name__ == "__main__":
interface.launch(share=True)
|