File size: 5,132 Bytes
0dec378 a484b84 0dec378 0a67e9a a484b84 9958140 0dec378 b206729 0dec378 79024bb b206729 b37d7c8 79024bb 3d2ee8a b0241f6 a484b84 1c144e4 b206729 79024bb 1c144e4 b206729 0dec378 a5a56d7 b5806de 8c0b352 a3cc10d 8c0b352 79024bb 0dec378 b20c582 b0241f6 b20c582 b0241f6 b20c582 a484b84 1c144e4 b20c582 79024bb 6c31c17 1c144e4 6c31c17 b0241f6 0a67e9a 79024bb 7f2fa6c 8221a06 b0241f6 b20c582 e201fee 289d5f1 b5806de 0dec378 b206729 b20c582 0dec378 b20c582 0dec378 b20c582 0dec378 b20c582 0dec378 e2531dc 0dec378 b20c582 0dec378 b20c582 0dec378 b20c582 0dec378 e2531dc 0dec378 b20c582 0dec378 0a67e9a b20c582 0a67e9a b20c582 79024bb b20c582 79024bb 0a67e9a b20c582 0a67e9a 2ee61fc 0a67e9a 0784aaa 79024bb 0a67e9a b20c582 0a67e9a bf2b726 0a67e9a a5a56d7 bf2b726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
basemodel = "black-forest-labs/FLUX.1-dev"
MAX_SEED = np.iinfo(np.int32).max
CSS = """
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
def enable_lora(lora_add):
if not lora_add:
return basemodel
else:
return lora_add
client = AsyncInferenceClient()
async def generate_image(
prompt:str,
model:str,
lora_word:str,
width:int=768,
height:int=1024,
scales:float=3.5,
steps:int=24,
seed:int=-1):
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
print(f'prompt:{prompt}')
text = str(translator.translate(prompt, 'English')) + "," + lora_word
try:
image = await client.text_to_image(
prompt=text,
height=height,
width=width,
guidance_scale=scales,
num_inference_steps=steps,
model=model,
)
except Exception as e:
raise gr.Error(f"Error in {e}")
return image, seed
async def upscale_image(image, upscale_factor):
try:
result = await client.text_to_image(
prompt="",
height=image.height * upscale_factor,
width=image.width * upscale_factor,
guidance_scale=3.5,
num_inference_steps=18,
model="finegrain/finegrain-image-enhancer"
)
except Exception as e:
raise gr.Error(f"Error in {e}")
return result[1]
async def gen(
prompt:str,
lora_add:str="XLabs-AI/flux-RealismLora",
lora_word:str="",
width:int=768,
height:int=1024,
scales:float=3.5,
steps:int=24,
seed:int=-1,
upscale_factor:int=2
):
model = enable_lora(lora_add)
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
upscaled_image = await upscale_image(image, upscale_factor)
return upscaled_image, seed
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
img = gr.Image(type="filepath", label='Imagen generada por Flux', height=600)
with gr.Row():
prompt = gr.Textbox(label='Ingresa tu prompt (Multi-Idiomas)', placeholder="Ingresa prompt...", scale=6)
sendBtn = gr.Button(scale=1, variant='primary')
with gr.Accordion("Opciones avanzadas", open=True):
with gr.Column(scale=1):
width = gr.Slider(
label="Ancho",
minimum=512,
maximum=1280,
step=8,
value=768,
)
height = gr.Slider(
label="Alto",
minimum=512,
maximum=1280,
step=8,
value=1024,
)
scales = gr.Slider(
label="Guía",
minimum=3.5,
maximum=7,
step=0.1,
value=3.5,
)
steps = gr.Slider(
label="Pasos",
minimum=1,
maximum=100,
step=1,
value=24,
)
seed = gr.Slider(
label="Semillas",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
lora_add = gr.Textbox(
label="Agregar Flux LoRA",
info="Modelo de LoRA a agregar",
lines=1,
value="XLabs-AI/flux-RealismLora",
)
lora_word = gr.Textbox(
label="Palabra clave de LoRA",
info="Palabra clave para activar el modelo de LoRA",
lines=1,
value="",
)
upscale_factor = gr.Radio(
label="Factor de escalado",
choices=[2, 3, 4],
value=2,
)
gr.on(
triggers=[
prompt.submit,
sendBtn.click,
],
fn=gen,
inputs=[
prompt,
lora_add,
lora_word,
width,
height,
scales,
steps,
seed,
upscale_factor
],
outputs=[img, seed]
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False) |