|
import os |
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from huggingface_hub import AsyncInferenceClient |
|
from translatepy import Translator |
|
import requests |
|
import re |
|
import asyncio |
|
from PIL import Image |
|
|
|
translator = Translator() |
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
basemodel = "black-forest-labs/FLUX.1-dev" |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
CSS = """ |
|
footer { |
|
visibility: hidden; |
|
} |
|
""" |
|
|
|
JS = """function () { |
|
gradioURL = window.location.href |
|
if (!gradioURL.endsWith('?__theme=dark')) { |
|
window.location.replace(gradioURL + '?__theme=dark'); |
|
} |
|
}""" |
|
|
|
def enable_lora(lora_add): |
|
if not lora_add: |
|
return basemodel |
|
else: |
|
return lora_add |
|
|
|
client = AsyncInferenceClient() |
|
|
|
async def generate_image( |
|
prompt:str, |
|
model:str, |
|
lora_word:str, |
|
width:int=768, |
|
height:int=1024, |
|
scales:float=3.5, |
|
steps:int=24, |
|
seed:int=-1): |
|
|
|
if seed == -1: |
|
seed = random.randint(0, MAX_SEED) |
|
seed = int(seed) |
|
print(f'prompt:{prompt}') |
|
|
|
text = str(translator.translate(prompt, 'English')) + "," + lora_word |
|
|
|
try: |
|
image = await client.text_to_image( |
|
prompt=text, |
|
height=height, |
|
width=width, |
|
guidance_scale=scales, |
|
num_inference_steps=steps, |
|
model=model, |
|
) |
|
except Exception as e: |
|
raise gr.Error(f"Error in {e}") |
|
|
|
return image, seed |
|
|
|
async def upscale_image(image, upscale_factor): |
|
try: |
|
result = await client.text_to_image( |
|
prompt="", |
|
height=image.height * upscale_factor, |
|
width=image.width * upscale_factor, |
|
guidance_scale=3.5, |
|
num_inference_steps=18, |
|
model="finegrain/finegrain-image-enhancer" |
|
) |
|
except Exception as e: |
|
raise gr.Error(f"Error in {e}") |
|
|
|
return result[1] |
|
|
|
async def gen( |
|
prompt:str, |
|
lora_add:str="XLabs-AI/flux-RealismLora", |
|
lora_word:str="", |
|
width:int=768, |
|
height:int=1024, |
|
scales:float=3.5, |
|
steps:int=24, |
|
seed:int=-1, |
|
upscale_factor:int=2 |
|
): |
|
model = enable_lora(lora_add) |
|
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed) |
|
|
|
upscaled_image = await upscale_image(image, upscale_factor) |
|
return upscaled_image, seed |
|
|
|
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: |
|
gr.HTML("<h1><center>Flux Lab Light</center></h1>") |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
with gr.Row(): |
|
img = gr.Image(type="filepath", label='Imagen generada por Flux', height=600) |
|
with gr.Row(): |
|
prompt = gr.Textbox(label='Ingresa tu prompt (Multi-Idiomas)', placeholder="Ingresa prompt...", scale=6) |
|
sendBtn = gr.Button(scale=1, variant='primary') |
|
with gr.Accordion("Opciones avanzadas", open=True): |
|
with gr.Column(scale=1): |
|
width = gr.Slider( |
|
label="Ancho", |
|
minimum=512, |
|
maximum=1280, |
|
step=8, |
|
value=768, |
|
) |
|
height = gr.Slider( |
|
label="Alto", |
|
minimum=512, |
|
maximum=1280, |
|
step=8, |
|
value=1024, |
|
) |
|
scales = gr.Slider( |
|
label="Guía", |
|
minimum=3.5, |
|
maximum=7, |
|
step=0.1, |
|
value=3.5, |
|
) |
|
steps = gr.Slider( |
|
label="Pasos", |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=24, |
|
) |
|
seed = gr.Slider( |
|
label="Semillas", |
|
minimum=-1, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=-1, |
|
) |
|
lora_add = gr.Textbox( |
|
label="Agregar Flux LoRA", |
|
info="Modelo de LoRA a agregar", |
|
lines=1, |
|
value="XLabs-AI/flux-RealismLora", |
|
) |
|
lora_word = gr.Textbox( |
|
label="Palabra clave de LoRA", |
|
info="Palabra clave para activar el modelo de LoRA", |
|
lines=1, |
|
value="", |
|
) |
|
upscale_factor = gr.Radio( |
|
label="Factor de escalado", |
|
choices=[2, 3, 4], |
|
value=2, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
sendBtn.click, |
|
], |
|
fn=gen, |
|
inputs=[ |
|
prompt, |
|
lora_add, |
|
lora_word, |
|
width, |
|
height, |
|
scales, |
|
steps, |
|
seed, |
|
upscale_factor |
|
], |
|
outputs=[img, seed] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(api_open=False).launch(show_api=False, share=False) |