rmayormartins's picture
Add application file
eab0c71
raw
history blame
1.12 kB
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
import gradio as gr
# Carrega o modelo de transferência de estilo pré-treinado
style_transfer_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
def load_image(image):
# Função para processar a imagem para o modelo
image = image.astype(np.float32)[np.newaxis, ...] / 255.
if image.shape[-1] == 4:
image = image[..., :3]
return image
def style_transfer(content_image, style_image):
# Processa as imagens
content_image = load_image(content_image)
style_image = load_image(style_image)
# Executa a transferência de estilo
stylized_image = style_transfer_model(tf.constant(content_image), tf.constant(style_image))[0]
# Converte a imagem resultante para o formato correto
stylized_image = np.array(stylized_image * 255, np.uint8)
# Remove a dimensão do batch
stylized_image = np.squeeze(stylized_image)
return stylized_image
iface = gr.Interface(
fn=style_transfer,
inputs=["image", "image"],
outputs="image"
)
iface.launch()