Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
model_name = "rubenroy/Geneva-12B-GCv2-5m" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def generate(message, chat_history, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1): | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant named Geneva, a 12 billion parameter Large Language Model, fine-tuned and trained by Ruben Roy. You have been trained with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations. This dataset was also made by Ruben Roy."}, # Attribution for Mistral removed to prevent unneccesary hallucinations. | |
] | |
for user, assistant in chat_history: | |
messages.append({"role": "user", "content": user}) | |
messages.append({"role": "assistant", "content": assistant}) | |
messages.append({"role": "user", "content": message}) | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
generated_ids = model.generate( | |
**model_inputs, | |
temperature=float(temperature), | |
top_p=float(top_p), | |
top_k=int(top_k), | |
max_new_tokens=int(max_new_tokens), | |
repetition_penalty=float(repetition_penalty), | |
do_sample=True if float(temperature) > 0 else False | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return response | |
TITLE_HTML = """ | |
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css"> | |
<style> | |
.model-btn { | |
background: linear-gradient(135deg, #059669 0%, #047857 100%); | |
color: white !important; | |
padding: 0.75rem 1rem; | |
border-radius: 0.5rem; | |
text-decoration: none !important; | |
font-weight: 500; | |
transition: all 0.2s ease; | |
font-size: 0.9rem; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
.model-btn:hover { | |
background: linear-gradient(135deg, #047857 0%, #065f46 100%); | |
box-shadow: 0 4px 6px rgba(0,0,0,0.2); | |
} | |
.model-section { | |
flex: 1; | |
max-width: 800px; | |
background: rgba(255, 255, 255, 0.05); | |
padding: 1.5rem; | |
border-radius: 1rem; | |
border: 1px solid rgba(255, 255, 255, 0.1); | |
backdrop-filter: blur(10px); | |
transition: all 0.3s ease; | |
} | |
.info-link { | |
color: #34d399; | |
text-decoration: none; | |
transition: color 0.2s ease; | |
} | |
.info-link:hover { | |
color: #6ee7b7; | |
text-decoration: underline; | |
} | |
.info-section { | |
margin-top: 0.5rem; | |
font-size: 0.9rem; | |
color: #94a3b8; | |
} | |
.settings-section { | |
background: rgba(255, 255, 255, 0.05); | |
padding: 1.5rem; | |
border-radius: 1rem; | |
margin: 1.5rem auto; | |
border: 1px solid rgba(255, 255, 255, 0.1); | |
max-width: 800px; | |
} | |
.settings-title { | |
color: #e2e8f0; | |
font-size: 1.25rem; | |
font-weight: 600; | |
margin-bottom: 1rem; | |
display: flex; | |
align-items: center; | |
gap: 0.7rem; | |
} | |
.parameter-info { | |
color: #94a3b8; | |
font-size: 0.8rem; | |
margin-top: 0.25rem; | |
} | |
</style> | |
<div style="background: linear-gradient(135deg, #064e3b 0%, #022c22 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);"> | |
<div style="margin-bottom: 1.5rem;"> | |
<div style="display: flex; align-items: center; justify-content: center; gap: 1rem;"> | |
<h1 style="font-size: 2.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #34d399 0%, #6ee7b7 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent;">Geneva</h1> | |
<div style="width: 2px; height: 2.5rem; background: linear-gradient(180deg, #059669 0%, #34d399 100%);"></div> | |
<p style="font-size: 1.25rem; color: #94a3b8; margin: 0;">GammaCorpus v2-5m</p> | |
</div> | |
<div class="info-section"> | |
<span>Fine-tuned from <a href="https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407" class="info-link">Mistral NeMo Instruct 2407</a> | Model: <a href="https://huggingface.co/rubenroy/Geneva-14B-GCv2-5m" class="info-link">Geneva-14B-GCv2-5m</a> | Training Dataset: <a href="https://huggingface.co/datasets/rubenroy/GammaCorpus-v2-5m" class="info-link">GammaCorpus v2 5m</a></span> | |
</div> | |
</div> | |
<div style="display: flex; gap: 1.5rem; justify-content: center;"> | |
<div class="model-section"> | |
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;"> | |
<i class="fa-solid fa-sparkles"></i> | |
Geneva Models | |
</h2> | |
<div style="display: grid; grid-auto-flow: column; gap: 0.75rem; overflow-x: auto; white-space: nowrap;"> | |
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-5m" class="model-btn">Geneva 12B GCv2 5m</a> | |
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-1m" class="model-btn">Geneva 12B GCv2 1m</a> | |
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-500k" class="model-btn">Geneva 12B GCv2 500k</a> | |
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-100k" class="model-btn">Geneva 12B GCv2 100k</a> | |
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-50k" class="model-btn">Geneva 12B GCv2 50k</a> | |
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-10k" class="model-btn">Geneva 12B GCv2 10k</a> | |
</div> | |
</div> | |
</div> | |
</div> | |
""" | |
examples = [ | |
["Explain deep learning in simple terms."], | |
["Write a short science fiction story."], | |
["Describe the laws of thermodynamics."], | |
["Write me a simple game in Python."] | |
] | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE_HTML) | |
with gr.Accordion("Generation Settings", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature", | |
info="Higher values make the output more random, lower values make it more deterministic", | |
interactive=True | |
) | |
top_p = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.9, | |
step=0.05, | |
label="Top P", | |
info="Controls the cumulative probability threshold for nucleus sampling", | |
interactive=True | |
) | |
top_k = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=50, | |
step=1, | |
label="Top K", | |
info="Limits the number of tokens to consider for each generation step", | |
interactive=True | |
) | |
with gr.Column(): | |
max_new_tokens = gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=512, | |
step=1, | |
label="Max New Tokens", | |
info="Maximum number of tokens to generate in the response", | |
interactive=True | |
) | |
repetition_penalty = gr.Slider( | |
minimum=1.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
label="Repetition Penalty", | |
info="Higher values stop the model from repeating the same info", | |
interactive=True | |
) | |
chatbot = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
temperature, | |
top_p, | |
top_k, | |
max_new_tokens, | |
repetition_penalty | |
], | |
examples=examples | |
) | |
demo.launch(share=True) |