fastsdcpu / frontend /webui /hf_demo.py
rupeshs's picture
updated
5993d69
raw
history blame
5.07 kB
import gradio as gr
from backend.lcm_text_to_image import LCMTextToImage
from backend.models.lcmdiffusion_setting import LCMLora, LCMDiffusionSetting
from constants import DEVICE, LCM_DEFAULT_MODEL_OPENVINO
from time import perf_counter
import numpy as np
from cv2 import imencode
import base64
from backend.device import get_device_name
from constants import APP_VERSION
from backend.device import is_openvino_device
import PIL
from backend.models.lcmdiffusion_setting import DiffusionTask
from pprint import pprint
lcm_text_to_image = LCMTextToImage()
lcm_lora = LCMLora(
base_model_id="Lykon/dreamshaper-7",
lcm_lora_id="latent-consistency/lcm-lora-sdv1-5",
)
# https://github.com/gradio-app/gradio/issues/2635#issuecomment-1423531319
def encode_pil_to_base64_new(pil_image):
image_arr = np.asarray(pil_image)[:, :, ::-1]
_, byte_data = imencode(".png", image_arr)
base64_data = base64.b64encode(byte_data)
base64_string_opencv = base64_data.decode("utf-8")
return "data:image/png;base64," + base64_string_opencv
# monkey patching encode pil
gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new
def predict(
prompt,
steps,
seed,
use_seed,
):
print(f"prompt - {prompt}")
lcm_diffusion_setting = LCMDiffusionSetting()
lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
lcm_diffusion_setting.openvino_lcm_model_id = "rupeshs/LCM-dreamshaper-v7-openvino"
lcm_diffusion_setting.use_lcm_lora = True
lcm_diffusion_setting.prompt = prompt
lcm_diffusion_setting.guidance_scale = 1.0
lcm_diffusion_setting.inference_steps = steps
lcm_diffusion_setting.seed = seed
lcm_diffusion_setting.use_seed = use_seed
lcm_diffusion_setting.use_safety_checker = True
lcm_diffusion_setting.use_tiny_auto_encoder = True
# lcm_diffusion_setting.image_width = 320 if is_openvino_device() else 512
# lcm_diffusion_setting.image_height = 320 if is_openvino_device() else 512
lcm_diffusion_setting.image_width = 512
lcm_diffusion_setting.image_height = 512
lcm_diffusion_setting.use_openvino = False
lcm_diffusion_setting.use_tiny_auto_encoder = True
pprint(lcm_diffusion_setting.model_dump())
lcm_text_to_image.init(lcm_diffusion_setting=lcm_diffusion_setting)
start = perf_counter()
images = lcm_text_to_image.generate(lcm_diffusion_setting)
latency = perf_counter() - start
print(f"Latency: {latency:.2f} seconds")
return images[0] # .resize([512, 512], PIL.Image.ANTIALIAS)
css = """
#container{
margin: 0 auto;
max-width: 40rem;
}
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
#generate_button {
color: white;
border-color: #007bff;
background: #007bff;
width: 200px;
height: 50px;
}
footer {
visibility: hidden
}
"""
def _get_footer_message() -> str:
version = f"<center><p> {APP_VERSION} "
footer_msg = version + (
' © 2023 <a href="https://github.com/rupeshs">'
" Rupesh Sreeraman</a></p></center>"
)
warning_msg = "<p><b> Please note that this is a minimal demo app.</b> </p><br>"
return warning_msg + footer_msg
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
use_openvino = "" if is_openvino_device() else ""
gr.Markdown(
f"""# FastSD CPU demo {use_openvino}
**Device : {DEVICE.upper()} , {get_device_name()}**
""",
elem_id="intro",
)
gr.HTML(
f"""
<p id="project-links" align="center">
<a href='https://github.com/rupeshs/fastsdcpu'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
</p>
"""
)
with gr.Row():
with gr.Row():
prompt = gr.Textbox(
placeholder="Describe the image you'd like to see",
scale=5,
container=False,
)
generate_btn = gr.Button(
"Generate",
scale=1,
elem_id="generate_button",
)
image = gr.Image(type="filepath")
with gr.Accordion("Advanced options", open=False):
steps = gr.Slider(
label="Steps",
value=3,
minimum=1,
maximum=4,
step=1,
)
seed = gr.Slider(
randomize=True,
minimum=0,
maximum=999999999,
label="Seed",
step=1,
)
seed_checkbox = gr.Checkbox(
label="Use seed",
value=False,
interactive=True,
)
gr.HTML(_get_footer_message())
inputs = [prompt, steps, seed, seed_checkbox]
generate_btn.click(fn=predict, inputs=inputs, outputs=image)
def start_demo_text_to_image(share=False):
demo.queue()
demo.launch(share=share)