File size: 6,660 Bytes
7c8b7dc
1382708
0c212b0
 
 
 
 
 
 
 
f03f46e
0c212b0
 
 
 
 
 
 
f03f46e
0c212b0
7e4bfeb
 
 
 
 
 
 
 
a226e05
 
bdd07df
a0b374c
a226e05
376505b
0e9a4d6
376505b
a226e05
0c212b0
 
 
 
 
 
 
 
 
 
 
f03f46e
 
 
 
 
 
bdd07df
9702e1d
bdd07df
 
9702e1d
 
 
 
f03f46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c8b7dc
 
9702e1d
f03f46e
 
 
 
 
07f3b15
f03f46e
 
 
 
 
 
 
 
8d8b990
 
f03f46e
 
b3eb5d6
f03f46e
 
 
 
 
 
 
 
638907a
 
f03f46e
6a06970
f03f46e
 
 
21baaa4
f03f46e
 
ef520df
f03f46e
 
 
 
 
 
 
 
942ac64
f03f46e
 
 
 
 
 
 
 
 
 
 
d31b340
21baaa4
f03f46e
 
 
 
 
 
 
0c212b0
14e604f
21baaa4
7e4bfeb
f03f46e
 
 
a7ebbd0
6a06970
 
f03f46e
987c7bb
7e4bfeb
0c212b0
9677c69
21baaa4
0c212b0
21baaa4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
import spaces
import soundfile as sf
import torch
from datetime import datetime
import random
import time
from datetime import datetime
import whisper
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, VitsModel
import torch
import numpy as np
import os
from timeit import default_timer as timer
import torch
import numpy as np
import pandas as pd
import whisper

DESCRIPTION = """\
# Ai Trek - Generative AI usage
This Space demonstrates LAIONBOT functionalities, 
🔎 Large Language Models is a model notable for its ability to achieve general-purpose language generation and understanding. 
🔨 On this demo, we can play with it not only by using text, but also asking questions and getting answers by Text to  speech model.
"""



def load_whisper():
    return whisper.load_model("medium", device  = 'cpu')

def load_tts():
    tts_model = VitsModel.from_pretrained("facebook/mms-tts-pol")
    #tts_model.to("cuda")
    tokenizer_tss = AutoTokenizer.from_pretrained("facebook/mms-tts-pol")
    return tts_model, tokenizer_tss


def save_to_txt(text_to_save):
    with open('prompt.txt', 'w', encoding='utf-8') as f:
        f.write(text_to_save)
        
def read_txt():
    with open('prompt.txt') as f:
        lines = f.readlines()
    return lines 


def _load_model_tokenizer():
    model_id = 'tangger/Qwen-7B-Chat'
    tokenizer = AutoTokenizer.from_pretrained(model_id,  trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",trust_remote_code=True, fp16=True).eval()  
    return model, tokenizer
whisper_model = load_whisper()
if torch.cuda.is_available():
    whisper_model = whisper_model.to(device='cuda')
    #whisper_model = load_whisper()
    tts_model, tokenizer_tss = load_tts()
    model, tokenizer = _load_model_tokenizer()


def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert(message),
            None if response is None else mdtex2html.convert(response),
        )
    return y


def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text

    
@spaces.GPU
def predict(_query, _chatbot, _task_history):
    print(f"User: {_parse_text(_query)}")
    _chatbot.append((_parse_text(_query), ""))
    full_response = ""

    for response in model.chat_stream(tokenizer, _query, history=_task_history,system = "Jesteś asystentem AI. Odpowiadaj grzecznie i w języku polskim :)"  ):
        _chatbot[-1] = (_parse_text(_query), _parse_text(response))

        yield _chatbot
        full_response = _parse_text(response)

    print(f"History: {_task_history}")
    _task_history.append((_query, full_response))
    print(f"Qwen-7B-Chat: {_parse_text(full_response)}")
    
@spaces.GPU
def read_text(text):
    print("___Tekst do przeczytania!")
    inputs = tokenizer_tss(text, return_tensors="pt")
    with torch.no_grad():
        output = tts_model(**inputs).waveform.squeeze().cpu().numpy()
    sf.write('temp_file.wav', output, tts_model.config.sampling_rate)
    return 'temp_file.wav'


def update_audio(text):
    return 'temp_file.wav'


def translate(audio):
    print("__Sending audio to stt model")
    transcription = whisper_model.transcribe(audio, language="pl")
    return transcription["text"]

@spaces.GPU(enable_queue=True)
def predict(audio, _chatbot, _task_history):
    # Użyj funkcji translate, aby przekształcić audio w tekst
    _query = whisper_model.transcribe(audio, language = 'pl')["text"]

    print(f"____User: {_parse_text(_query)}")
    _chatbot.append((_parse_text(_query), ""))
    full_response = "" 

    for response in model.chat_stream(tokenizer,
                                      _query,
                                      history= _task_history,
                                      system = "You are an AI assistant. Please be kind and answer responsibly."):
        _chatbot[-1] = (_parse_text(_query), _parse_text(response))
        yield _chatbot
        full_response = _parse_text(response)

    print(f"____History: {_task_history}")
    _task_history.append((_query, full_response))
    print(f"__Qwen-7B-Chat: {_parse_text(full_response)}")
    print("____full_response",full_response)
    audio_file = read_text(_parse_text(full_response))  # Generowanie audio
    return full_response


@spaces.GPU(enable_queue=True)
def regenerate(_chatbot, _task_history):
    if not _task_history:
        yield _chatbot
        return
    item = _task_history.pop(-1)
    _chatbot.pop(-1)
    yield from predict(item[0], _chatbot, _task_history)


with gr.Blocks() as demo:
    gr.Markdown(DESCRIPTION)
    chatbot = gr.Chatbot(label='Llama Voice Chatbot', elem_classes="control-height")
    query = gr.Textbox(lines=2, label='Input')
    task_history = gr.State([])
    audio_output = gr.Audio('ai_intro.wav', label="Generated Audio (wav)", type='filepath', autoplay=False)
    # with gr.Row():
    #     submit_btn = gr.Button("🚀 Send an input file to LLM")
    with gr.Row():
        audio_upload = gr.Audio(sources="microphone", type="filepath", show_label=False)
        submit_audio_btn = gr.Button("🎙️ Send an audio")

        #submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True)
        submit_audio_btn.click(predict, [audio_upload, chatbot, task_history], [chatbot], show_progress=True).then(update_audio, chatbot, audio_output)

demo.queue().launch()