Spaces:
Runtime error
Runtime error
File size: 6,660 Bytes
7c8b7dc 1382708 0c212b0 f03f46e 0c212b0 f03f46e 0c212b0 7e4bfeb a226e05 bdd07df a0b374c a226e05 376505b 0e9a4d6 376505b a226e05 0c212b0 f03f46e bdd07df 9702e1d bdd07df 9702e1d f03f46e 7c8b7dc 9702e1d f03f46e 07f3b15 f03f46e 8d8b990 f03f46e b3eb5d6 f03f46e 638907a f03f46e 6a06970 f03f46e 21baaa4 f03f46e ef520df f03f46e 942ac64 f03f46e d31b340 21baaa4 f03f46e 0c212b0 14e604f 21baaa4 7e4bfeb f03f46e a7ebbd0 6a06970 f03f46e 987c7bb 7e4bfeb 0c212b0 9677c69 21baaa4 0c212b0 21baaa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import spaces
import soundfile as sf
import torch
from datetime import datetime
import random
import time
from datetime import datetime
import whisper
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, VitsModel
import torch
import numpy as np
import os
from timeit import default_timer as timer
import torch
import numpy as np
import pandas as pd
import whisper
DESCRIPTION = """\
# Ai Trek - Generative AI usage
This Space demonstrates LAIONBOT functionalities,
🔎 Large Language Models is a model notable for its ability to achieve general-purpose language generation and understanding.
🔨 On this demo, we can play with it not only by using text, but also asking questions and getting answers by Text to speech model.
"""
def load_whisper():
return whisper.load_model("medium", device = 'cpu')
def load_tts():
tts_model = VitsModel.from_pretrained("facebook/mms-tts-pol")
#tts_model.to("cuda")
tokenizer_tss = AutoTokenizer.from_pretrained("facebook/mms-tts-pol")
return tts_model, tokenizer_tss
def save_to_txt(text_to_save):
with open('prompt.txt', 'w', encoding='utf-8') as f:
f.write(text_to_save)
def read_txt():
with open('prompt.txt') as f:
lines = f.readlines()
return lines
def _load_model_tokenizer():
model_id = 'tangger/Qwen-7B-Chat'
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",trust_remote_code=True, fp16=True).eval()
return model, tokenizer
whisper_model = load_whisper()
if torch.cuda.is_available():
whisper_model = whisper_model.to(device='cuda')
#whisper_model = load_whisper()
tts_model, tokenizer_tss = load_tts()
model, tokenizer = _load_model_tokenizer()
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert(message),
None if response is None else mdtex2html.convert(response),
)
return y
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
@spaces.GPU
def predict(_query, _chatbot, _task_history):
print(f"User: {_parse_text(_query)}")
_chatbot.append((_parse_text(_query), ""))
full_response = ""
for response in model.chat_stream(tokenizer, _query, history=_task_history,system = "Jesteś asystentem AI. Odpowiadaj grzecznie i w języku polskim :)" ):
_chatbot[-1] = (_parse_text(_query), _parse_text(response))
yield _chatbot
full_response = _parse_text(response)
print(f"History: {_task_history}")
_task_history.append((_query, full_response))
print(f"Qwen-7B-Chat: {_parse_text(full_response)}")
@spaces.GPU
def read_text(text):
print("___Tekst do przeczytania!")
inputs = tokenizer_tss(text, return_tensors="pt")
with torch.no_grad():
output = tts_model(**inputs).waveform.squeeze().cpu().numpy()
sf.write('temp_file.wav', output, tts_model.config.sampling_rate)
return 'temp_file.wav'
def update_audio(text):
return 'temp_file.wav'
def translate(audio):
print("__Sending audio to stt model")
transcription = whisper_model.transcribe(audio, language="pl")
return transcription["text"]
@spaces.GPU(enable_queue=True)
def predict(audio, _chatbot, _task_history):
# Użyj funkcji translate, aby przekształcić audio w tekst
_query = whisper_model.transcribe(audio, language = 'pl')["text"]
print(f"____User: {_parse_text(_query)}")
_chatbot.append((_parse_text(_query), ""))
full_response = ""
for response in model.chat_stream(tokenizer,
_query,
history= _task_history,
system = "You are an AI assistant. Please be kind and answer responsibly."):
_chatbot[-1] = (_parse_text(_query), _parse_text(response))
yield _chatbot
full_response = _parse_text(response)
print(f"____History: {_task_history}")
_task_history.append((_query, full_response))
print(f"__Qwen-7B-Chat: {_parse_text(full_response)}")
print("____full_response",full_response)
audio_file = read_text(_parse_text(full_response)) # Generowanie audio
return full_response
@spaces.GPU(enable_queue=True)
def regenerate(_chatbot, _task_history):
if not _task_history:
yield _chatbot
return
item = _task_history.pop(-1)
_chatbot.pop(-1)
yield from predict(item[0], _chatbot, _task_history)
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.Chatbot(label='Llama Voice Chatbot', elem_classes="control-height")
query = gr.Textbox(lines=2, label='Input')
task_history = gr.State([])
audio_output = gr.Audio('ai_intro.wav', label="Generated Audio (wav)", type='filepath', autoplay=False)
# with gr.Row():
# submit_btn = gr.Button("🚀 Send an input file to LLM")
with gr.Row():
audio_upload = gr.Audio(sources="microphone", type="filepath", show_label=False)
submit_audio_btn = gr.Button("🎙️ Send an audio")
#submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True)
submit_audio_btn.click(predict, [audio_upload, chatbot, task_history], [chatbot], show_progress=True).then(update_audio, chatbot, audio_output)
demo.queue().launch() |