Spaces:
Build error
Build error
sample
#1
by
isayahc
- opened
- README.md +2 -2
- app.py +26 -19
- requirements.txt +1 -1
README.md
CHANGED
@@ -4,9 +4,9 @@ emoji: π
|
|
4 |
colorFrom: gray
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.2.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,34 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
-
import random
|
3 |
-
import time
|
4 |
import boto3
|
5 |
from botocore import UNSIGNED
|
6 |
from botocore.client import Config
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
9 |
from langchain.llms import HuggingFaceHub
|
10 |
-
model_id = HuggingFaceHub(repo_id="
|
11 |
|
12 |
from langchain.embeddings import HuggingFaceHubEmbeddings
|
13 |
embeddings = HuggingFaceHubEmbeddings()
|
14 |
|
15 |
-
from langchain.vectorstores import
|
16 |
|
17 |
from langchain.chains import RetrievalQA
|
18 |
|
19 |
-
|
20 |
-
s3.download_file('rad-rag-demos', 'vectorstores/faiss_db_ray.zip', './chroma_db/faiss_db_ray.zip')
|
21 |
-
with zipfile.ZipFile('./chroma_db/faiss_db_ray.zip', 'r') as zip_ref:
|
22 |
-
zip_ref.extractall('./chroma_db/')
|
23 |
|
24 |
-
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
global qa
|
31 |
-
qa = RetrievalQA.from_chain_type(llm=model_id, chain_type="stuff", retriever=retriever)
|
32 |
|
33 |
|
34 |
def add_text(history, text):
|
@@ -40,7 +46,8 @@ def bot(history):
|
|
40 |
history[-1][1] = response['result']
|
41 |
return history
|
42 |
|
43 |
-
def infer(question):
|
|
|
44 |
query = question
|
45 |
result = qa({"query": query})
|
46 |
return result
|
@@ -51,9 +58,9 @@ css="""
|
|
51 |
|
52 |
title = """
|
53 |
<div style="text-align: center;max-width: 700px;">
|
54 |
-
<h1>Chat with
|
55 |
-
<p style="text-align: center;">
|
56 |
-
start asking questions about the
|
57 |
</div>
|
58 |
"""
|
59 |
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import boto3
|
3 |
from botocore import UNSIGNED
|
4 |
from botocore.client import Config
|
5 |
+
|
6 |
+
from langchain.document_loaders import WebBaseLoader
|
7 |
+
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=10)
|
10 |
|
11 |
from langchain.llms import HuggingFaceHub
|
12 |
+
model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":300})
|
13 |
|
14 |
from langchain.embeddings import HuggingFaceHubEmbeddings
|
15 |
embeddings = HuggingFaceHubEmbeddings()
|
16 |
|
17 |
+
from langchain.vectorstores import Chroma
|
18 |
|
19 |
from langchain.chains import RetrievalQA
|
20 |
|
21 |
+
from langchain.prompts import ChatPromptTemplate
|
|
|
|
|
|
|
22 |
|
23 |
+
#web_links = ["https://www.databricks.com/","https://help.databricks.com","https://docs.databricks.com","https://kb.databricks.com/","http://docs.databricks.com/getting-started/index.html","http://docs.databricks.com/introduction/index.html","http://docs.databricks.com/getting-started/tutorials/index.html","http://docs.databricks.com/machine-learning/index.html","http://docs.databricks.com/sql/index.html"]
|
24 |
+
#loader = WebBaseLoader(web_links)
|
25 |
+
#documents = loader.load()
|
26 |
+
|
27 |
+
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
|
28 |
+
s3.download_file('rad-rag-demos', 'vectorstores/chroma.sqlite3', './chroma_db/chroma.sqlite3')
|
29 |
+
|
30 |
+
db = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
|
31 |
+
db.get()
|
32 |
+
#texts = text_splitter.split_documents(documents)
|
33 |
+
#db = Chroma.from_documents(texts, embedding_function=embeddings)
|
34 |
+
retriever = db.as_retriever()
|
35 |
|
36 |
global qa
|
37 |
+
qa = RetrievalQA.from_chain_type(llm=model_id, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
38 |
|
39 |
|
40 |
def add_text(history, text):
|
|
|
46 |
history[-1][1] = response['result']
|
47 |
return history
|
48 |
|
49 |
+
def infer(question):
|
50 |
+
|
51 |
query = question
|
52 |
result = qa({"query": query})
|
53 |
return result
|
|
|
58 |
|
59 |
title = """
|
60 |
<div style="text-align: center;max-width: 700px;">
|
61 |
+
<h1>Chat with PDF</h1>
|
62 |
+
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
|
63 |
+
when everything is ready, you can start asking questions about the pdf ;)</p>
|
64 |
</div>
|
65 |
"""
|
66 |
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
huggingface_hub
|
2 |
-
|
3 |
langchain
|
4 |
boto3
|
5 |
unstructured
|
|
|
1 |
huggingface_hub
|
2 |
+
chromadb
|
3 |
langchain
|
4 |
boto3
|
5 |
unstructured
|