Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import numpy as np | |
os.system("pip install pdfminer.six rank_bm25 torch transformers") | |
from gradio.mix import Series | |
#import re | |
from rank_bm25 import BM25Okapi | |
import string | |
import torch | |
from transformers import pipeline | |
import pdfminer | |
from pdfminer.high_level import extract_text | |
len_doc = 500 | |
overlap = 15 | |
param_top_k_retriver = 15 | |
param_top_k_ranker = 3 | |
def read_pdf(file): | |
text = extract_text(file.name) | |
# Split text into smaller docs | |
docs = [] | |
i = 0 | |
while i < len(text): | |
docs.append(text[i:i+len_doc]) | |
i = i + len_doc - overlap | |
return docs | |
# We use BM25 as retriver which will do 1st round of candidate filtering based on word based matching | |
def bm25_tokenizer(text): | |
stop_w = ['a', 'the', 'am', 'is' , 'are', 'who', 'how', 'where', 'when', 'why', 'what'] | |
tokenized_doc = [] | |
for token in text.lower().split(): | |
token = token.strip(string.punctuation) | |
if len(token) > 0 and token not in stop_w: | |
tokenized_doc.append(token) | |
return tokenized_doc | |
def retrieval(query, top_k_retriver, docs, bm25_): | |
bm25_scores = bm25_.get_scores(bm25_tokenizer(query)) | |
top_n = np.argsort(bm25_scores)[::-1][:top_k_retriver] | |
bm25_hits = [{'corpus_id': idx, | |
'score': bm25_scores[idx], | |
'docs':docs[idx]} for idx in top_n if bm25_scores[idx] > 0] | |
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True) | |
return bm25_hits | |
def qa_ranker(query, docs_, top_k_ranker): | |
ans = [] | |
for doc in docs_: | |
answer = qa_model(question = query, | |
context = doc) | |
answer['doc'] = doc | |
ans.append(answer) | |
return sorted(ans, key=lambda x: x['score'], reverse=True)[:top_k_ranker] | |
def cstr(s, color='black'): | |
return "<text style=color:{}>{}</text>".format(color, s) | |
def cstr_bold(s, color='black'): | |
return "<text style=color:{}><b>{}</b></text>".format(color, s) | |
def cstr_break(s, color='black'): | |
return "<text style=color:{}><br>{}</text>".format(color, s) | |
def print_colored(text, start_idx, end_idx, confidence): | |
conf_str = '- Confidence: ' + confidence | |
a = cstr(' '.join([text[:start_idx], \ | |
cstr_bold(text[start_idx:end_idx], color='blue'), \ | |
text[end_idx:], \ | |
cstr_break(conf_str, color='grey')]), color='black') | |
return a | |
def final_qa_pipeline(file, query, model_nm): | |
docs = read_pdf(file) | |
tokenized_corpus = [] | |
for doc in docs: | |
tokenized_corpus.append(bm25_tokenizer(doc)) | |
bm25 = BM25Okapi(tokenized_corpus) | |
top_k_retriver, top_k_ranker = param_top_k_retriver, param_top_k_ranker | |
lvl1 = retrieval(query, top_k_retriver, docs, bm25) | |
qa_model = pipeline("question-answering", | |
#model = "deepset/minilm-uncased-squad2") | |
model = "deepset/"+ str(model_nm)) | |
if len(lvl1) > 0: | |
fnl_rank = qa_ranker(query, [l["docs"] for l in lvl1], top_k_ranker) | |
top1 = print_colored(fnl_rank[0]['doc'], fnl_rank[0]['start'], fnl_rank[0]['end'], str(np.round(100*fnl_rank[0]["score"],1))+"%") | |
if len(lvl1)>1: | |
top2 = print_colored(fnl_rank[1]['doc'], fnl_rank[1]['start'], fnl_rank[1]['end'], str(np.round(100*fnl_rank[1]["score"],1))+"%") | |
else: | |
top2 = "None" | |
return (top1, top2) | |
else: | |
return ("No match","No match") | |
examples = [ | |
[os.path.abspath("dbs-annual-report-2020.pdf"), "how many times has DBS won Best bank in the world ?"], | |
[os.path.abspath("dbs-annual-report-2020.pdf"), "what is PURE ?"], | |
[os.path.abspath("dbs-annual-report-2020.pdf"), "how much dividend was paid to shareholders ?"], | |
[os.path.abspath("dbs-annual-report-2020.pdf"), "what are the key risks ?"], | |
[os.path.abspath("dbs-annual-report-2020.pdf"), "what is the sustainability focus ?"], | |
[os.path.abspath("NASDAQ_AAPL_2020.pdf"), "how much are the outstanding shares ?"], | |
[os.path.abspath("NASDAQ_AAPL_2020.pdf"), "what is competitors strategy ?"], | |
[os.path.abspath("NASDAQ_AAPL_2020.pdf"), "who is the chief executive officer ?"], | |
[os.path.abspath("NASDAQ_MSFT_2020.pdf"), "How much is the guided revenue for next quarter?"], | |
] | |
iface = gr.Interface( | |
fn = final_qa_pipeline, | |
inputs = [gr.inputs.File(label="input pdf file"), gr.inputs.Textbox(label="Question:"), gr.inputs.Dropdown(choices=["minilm-uncased-squad2","roberta-base-squad2"],label="Model")], | |
outputs = [gr.outputs.HTML(label="Top 1 answer"), gr.outputs.HTML(label="Top 2 answer")], | |
examples=examples, | |
theme = "grass", | |
title = "Question Answering on annual reports", | |
description = "Navigate long annual reports by using Machine learning to answer your questions. \nSimply upload any annual report pdf you are interested in and ask model a question OR load an example from below." | |
) | |
iface.launch(enable_queue = True) |