File size: 4,526 Bytes
51a7d9e
 
 
 
9eefdf9
51a7d9e
edb9e8a
51a7d9e
 
 
063316d
99a7a45
 
51a7d9e
99a7a45
51a7d9e
27d1730
51a7d9e
 
 
 
 
 
 
 
 
 
3bc2ef0
063316d
22f5f54
f2cc9dc
22f5f54
f2cc9dc
22f5f54
3bc2ef0
51a7d9e
9eefdf9
 
 
 
 
 
 
 
 
f663115
9a43acc
5312535
fd6304d
 
51a7d9e
 
 
6f1ee3e
51a7d9e
fd6304d
487032c
99a7a45
6f1ee3e
 
030c23d
9eefdf9
 
639e063
edb9e8a
9eefdf9
5312535
030c23d
f663115
 
51a7d9e
5312535
9eefdf9
 
51a7d9e
9eefdf9
0961bc7
9eefdf9
9a43acc
50b348c
 
 
 
9a43acc
9eefdf9
99a7a45
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
063316d
51a7d9e
 
 
 
5312535
063316d
51a7d9e
063316d
5312535
51a7d9e
 
 
 
 
 
 
 
 
 
 
99a7a45
51a7d9e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteriaList, StoppingCriteria
import os
from threading import Thread


HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_LIST = "THUDM/LongWriter-glm4-9b"
#MODELS = os.environ.get("MODELS")
#MODEL_NAME = MODELS.split("/")[-1]

TITLE = "<h1><center>GLM SPACE</center></h1>"

PLACEHOLDER = f'<h3><center>LongWriter-glm4-9b is trained based on glm-4-9b, and is capable of generating 10,000+ words at once.</center></h3>'

CSS = """
.duplicate-button {
  margin: auto !important;
  color: white !important;
  background: black !important;
  border-radius: 100vh !important;
}
"""

model = AutoModelForCausalLM.from_pretrained(
        "THUDM/LongWriter-glm4-9b",
        torch_dtype=torch.bfloat16,
        device_map="auto",
        trust_remote_code=True,
        ).eval()

tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-glm4-9b",trust_remote_code=True)

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        # stop_ids = model.config.eos_token_id
        stop_ids = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
                    tokenizer.get_command("<|observation|>")]
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

@spaces.GPU()
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int):
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = []
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
    #conversation.append({"role": "user", "content": message})

    print(f"Conversation is -\n{conversation}")
    stop = StopOnTokens()

    input_ids = tokenizer.build_chat_input(message, history=conversation, role='user').input_ids.to(model.device)
    #input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
                    tokenizer.get_command("<|observation|>")]

    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        streamer=streamer,
        do_sample=True,
        top_k=1,
        temperature=temperature,
        repetition_penalty=1,
        stopping_criteria=StoppingCriteriaList([stop]),
        eos_token_id=eos_token_id,
    )
    #gen_kwargs = {**input_ids, **generate_kwargs}

    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()
    buffer = ""   
    for new_token in streamer:
        if new_token and '<|user|>' not in new_token:
            buffer += new_token
        yield buffer

chatbot = gr.Chatbot(height=600, placeholder = PLACEHOLDER)

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.5,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=1024,
                maximum=32768,
                step=1,
                value=4096,
                label="Max New Tokens",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )
    

if __name__ == "__main__":
    demo.launch()