glm-chat / app.py
vilarin's picture
Update app.py
50b348c verified
raw
history blame
4.53 kB
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteriaList, StoppingCriteria
import os
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_LIST = "THUDM/LongWriter-glm4-9b"
#MODELS = os.environ.get("MODELS")
#MODEL_NAME = MODELS.split("/")[-1]
TITLE = "<h1><center>GLM SPACE</center></h1>"
PLACEHOLDER = f'<h3><center>LongWriter-glm4-9b is trained based on glm-4-9b, and is capable of generating 10,000+ words at once.</center></h3>'
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
model = AutoModelForCausalLM.from_pretrained(
"THUDM/LongWriter-glm4-9b",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
).eval()
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-glm4-9b",trust_remote_code=True)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
# stop_ids = model.config.eos_token_id
stop_ids = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
tokenizer.get_command("<|observation|>")]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
@spaces.GPU()
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
#conversation.append({"role": "user", "content": message})
print(f"Conversation is -\n{conversation}")
stop = StopOnTokens()
input_ids = tokenizer.build_chat_input(message, history=conversation, role='user').input_ids.to(model.device)
#input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
tokenizer.get_command("<|observation|>")]
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
streamer=streamer,
do_sample=True,
top_k=1,
temperature=temperature,
repetition_penalty=1,
stopping_criteria=StoppingCriteriaList([stop]),
eos_token_id=eos_token_id,
)
#gen_kwargs = {**input_ids, **generate_kwargs}
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_token in streamer:
if new_token and '<|user|>' not in new_token:
buffer += new_token
yield buffer
chatbot = gr.Chatbot(height=600, placeholder = PLACEHOLDER)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.5,
label="Temperature",
render=False,
),
gr.Slider(
minimum=1024,
maximum=32768,
step=1,
value=4096,
label="Max New Tokens",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()