Spaces:
Runtime error
Runtime error
File size: 1,313 Bytes
3e7fb54 56e7b68 3e7fb54 56e7b68 3e7fb54 0e79c88 3e7fb54 0e79c88 56e7b68 0e79c88 3e7fb54 0e79c88 3e7fb54 0e79c88 3e7fb54 047d22b 3e7fb54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import warnings
import gradio as gr
from proxy_model import RemoteModelProxy
# Suppress the FutureWarning
warnings.filterwarnings("ignore", category=FutureWarning, module="torch")
# Load the model via the proxy
model_proxy = RemoteModelProxy("deepseek-ai/DeepSeek-V3")
# Define the text classification function
def classify_text(text):
try:
result = model_proxy.classify_text(text)
return result
except Exception as e:
print(f"Error during text classification: {e}")
return {
"Predicted Class": "Error",
"Probabilities": []
}
# Create a Gradio interface
try:
iface = gr.Interface(
fn=classify_text, # Function to call
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), # Input component
outputs=[
gr.Label(label="Predicted Class"), # Output component for predicted class
gr.Label(label="Probabilities") # Output component for probabilities
],
title="DeepSeek-V3 Text Classification",
description="Classify text using the DeepSeek-V3 model."
)
except Exception as e:
print(f"Failed to create Gradio interface: {e}")
# Launch the interface
try:
iface.launch()
except Exception as e:
print(f"Failed to launch Gradio interface: {e}") |