Spaces:
Sleeping
Sleeping
File size: 3,292 Bytes
3b2349b d44bcd8 3b2349b d44bcd8 3b2349b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import os
import numpy as np
import torch
import skimage
from PIL import Image
import open_clip
import gradio as gr
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
model.eval() # model in train mode by default, impacts some models with BatchNorm or stochastic depth active
tokenizer = open_clip.get_tokenizer('ViT-B-32')
target_labels = ["page","chelsea","astronaut","rocket",
"motorcycle_right","camera","horse","coffee",
'logo']
original_images = []
images = []
file_names = []
for filename in [filename for filename in os.listdir(skimage.data_dir) if filename.endswith(".png") or filename.endswith(".jpg")]:
name = os.path.splitext(filename)[0]
if name not in target_labels:
continue
image = Image.open(os.path.join(skimage.data_dir, filename)).convert("RGB")
original_images.append(image)
images.append(preprocess(image))
file_names.append(filename)
image_input = torch.tensor(np.stack(images))
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image_input).float()
image_features /= image_features.norm(dim=-1, keepdim=True)
def identify_image(input_description):
if input_description is None: return None
text_tokens = tokenizer([input_description])
with torch.no_grad(), torch.cuda.amp.autocast():
text_features = model.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T)
top_probs, _ = text_probs.cpu().topk(1, dim=-1)
return original_images[top_probs.argmax().item()]
with gr.Blocks() as demo:
gr.HTML("<h1 align = 'center'> Image Search </h1>")
gr.HTML("<h4 align = 'center'> Identify the most suitable image for description provided.</h4>")
with gr.Row():
with gr.Column(scale=2):
gr.Gallery(value = original_images,
label="Images to search from", show_label=True, elem_id="gallery"
, columns=[3], rows=[3], object_fit="contain", height="auto")
with gr.Column(scale=2):
content = gr.Textbox(label = "Enter search text here")
inputs = [
content,
]
gr.Examples(["Page of text about segmentation",
"Facial photo of a tabby cat",
"Portrait of an astronaut with the American flag",
"Rocket standing on a launchpad",
"Red motorcycle standing in a garage",
"Person looking at a camera on a tripod",
"Black-and-white silhouette of a horse",
"Cup of coffee on a saucer",
"A snake in the background"],
inputs = inputs)
generate_btn = gr.Button(value = 'Identify')
outputs = [gr.Image(label = "Is this the image you are referring to?",
height = 512, width = 512)]
generate_btn.click(fn = identify_image, inputs= inputs, outputs = outputs)
## for collab
# demo.launch(debug=True)
if __name__ == '__main__':
demo.launch()
|