schroneko's picture
Update app.py
ca0aa0f verified
raw
history blame
2.17 kB
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import gradio as gr
import spaces
model_id = "meta-llama/Llama-Guard-3-8B-INT8"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
def load_model():
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=dtype,
device_map="auto",
quantization_config=quantization_config,
low_cpu_mem_usage=True
)
return tokenizer, model
tokenizer, model = load_model()
@spaces.GPU
def moderate(user_input, assistant_response):
chat = [
{"role": "user", "content": user_input},
{"role": "assistant", "content": assistant_response},
]
input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device)
with torch.no_grad():
output = model.generate(
input_ids=input_ids,
max_new_tokens=200,
pad_token_id=tokenizer.eos_token_id,
do_sample=False
)
result = tokenizer.decode(output[0], skip_special_tokens=True)
result = result.split(assistant_response)[-1].strip()
is_safe = "safe" in result.lower()
categories = []
if not is_safe and "categories:" in result:
categories = [cat.strip() for cat in result.split("categories:")[1].split(",") if cat.strip()]
return {
"is_safe": "Safe" if is_safe else "Unsafe",
"categories": ", ".join(categories) if categories else "None",
"raw_output": result
}
iface = gr.Interface(
fn=moderate,
inputs=[
gr.Textbox(lines=3, label="User Input"),
gr.Textbox(lines=3, label="Assistant Response")
],
outputs=[
gr.Textbox(label="Safety Status"),
gr.Textbox(label="Violated Categories"),
gr.Textbox(label="Raw Output")
],
title="Llama Guard Moderation",
description="Enter a user input and an assistant response to check for content moderation."
)
if __name__ == "__main__":
iface.launch()