text_summariser / chatfuncs /chatfuncs.py
seanpedrickcase's picture
Dockerfile now loads models to local folder. Can use custom output folder. requrirements for GPU-enabled summarisation now in separate file to hopefully avoid HF space issues.
3809dc8
from typing import TypeVar
# Model packages
import torch.cuda
from transformers import pipeline
import time
torch.cuda.empty_cache()
PandasDataFrame = TypeVar('pd.core.frame.DataFrame')
model_type = None # global variable setup
full_text = "" # Define dummy source text (full text) just to enable highlight function to load
model = [] # Define empty list for model functions to run
tokenizer = [] # Define empty list for model functions to run
# Currently set gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda
if torch.cuda.is_available():
torch_device = "cuda"
gpu_layers = 0
else:
torch_device = "cpu"
gpu_layers = 0
print("Running on device:", torch_device)
threads = 8 #torch.get_num_threads()
print("CPU threads:", threads)
# flan-t5-large-stacked-xsum Model parameters
temperature: float = 0.1
top_k: int = 3
top_p: float = 1
repetition_penalty: float = 1.05 #1.3
last_n_tokens: int = 64
max_new_tokens: int = 4096 # 200
seed: int = 42
reset: bool = True
stream: bool = False
threads: int = threads
batch_size:int = 256
context_length:int = 4096
sample = True
class CtransInitConfig_gpu:
def __init__(self,
last_n_tokens=last_n_tokens,
seed=seed,
n_threads=threads,
n_batch=batch_size,
n_ctx=24576,
n_gpu_layers=gpu_layers):
self.last_n_tokens = last_n_tokens
self.seed = seed
self.n_threads = n_threads
self.n_batch = n_batch
self.n_ctx = n_ctx
self.n_gpu_layers = n_gpu_layers
# self.stop: list[str] = field(default_factory=lambda: [stop_string])
def update_gpu(self, new_value):
self.n_gpu_layers = new_value
class CtransInitConfig_cpu(CtransInitConfig_gpu):
def __init__(self):
super().__init__()
self.n_gpu_layers = 0
gpu_config = CtransInitConfig_gpu()
cpu_config = CtransInitConfig_cpu()
class CtransGenGenerationConfig:
def __init__(self, temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repetition_penalty,
seed=seed,
stream=stream,
max_tokens=max_new_tokens
):
self.temperature = temperature
self.top_k = top_k
self.top_p = top_p
self.repeat_penalty = repeat_penalty
self.seed = seed
self.max_tokens=max_tokens
self.stream = stream
def update_temp(self, new_value):
self.temperature = new_value
def llama_cpp_streaming(history, full_prompt, model_type,
temperature=temperature,
max_new_tokens=max_new_tokens,
sample=sample,
repetition_penalty=repetition_penalty,
top_p=top_p,
top_k=top_k
):
#print("Model type is: ", model_type)
#if not full_prompt.strip():
# if history is None:
# history = []
# return history
#tokens = model.tokenize(full_prompt)
gen_config = CtransGenGenerationConfig()
gen_config.update_temp(temperature)
print(vars(gen_config))
# Pull the generated text from the streamer, and update the model output.
start = time.time()
NUM_TOKENS=0
print('-'*4+'Start Generation'+'-'*4)
output = model(
full_prompt, **vars(gen_config))
history[-1][1] = ""
for out in output:
if "choices" in out and len(out["choices"]) > 0 and "text" in out["choices"][0]:
history[-1][1] += out["choices"][0]["text"]
NUM_TOKENS+=1
yield history
else:
print(f"Unexpected output structure: {out}")
time_generate = time.time() - start
print('\n')
print('-'*4+'End Generation'+'-'*4)
print(f'Num of generated tokens: {NUM_TOKENS}')
print(f'Time for complete generation: {time_generate}s')
print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')