Spaces:
Sleeping
Sleeping
File size: 4,357 Bytes
35d6846 93c305a 35d6846 93c305a 18e9814 35d6846 93c305a 18e9814 93c305a 35d6846 a9f93ea 111a3cd 35d6846 f028eb9 35d6846 97d09e9 18e9814 35d6846 97d09e9 35d6846 18e9814 cdb7645 35d6846 93c305a 35d6846 18e9814 93c305a 18e9814 97d09e9 18e9814 35d6846 97d09e9 18e9814 35d6846 cdb7645 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import torch
import gradio as gr
from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel
from diffusers.utils import export_to_gif, load_image
from transformers import pipeline
from PIL import Image
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
def translate_korean_to_english(text):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
translated = translator(text)[0]['translation_text']
return translated
return text
def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale, width, height, num_frames):
prompt = translate_korean_to_english(prompt)
negative_prompt = translate_korean_to_english(negative_prompt)
motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device)
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device)
pipe = AnimateDiffPipeline.from_pretrained(
"SG161222/Realistic_Vision_V6.0_B1_noVAE",
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
torch_dtype=torch.float16,
).to(device)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++", use_karras_sigmas=True)
image_files = [
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png"
]
conditioning_frames = [load_image(img_file) for img_file in image_files]
conditioning_frame_indices = eval(conditioning_frame_indices)
controlnet_conditioning_scale = float(controlnet_conditioning_scale)
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
conditioning_frames=conditioning_frames,
controlnet_conditioning_scale=controlnet_conditioning_scale,
controlnet_frame_indices=conditioning_frame_indices,
width=width,
height=height,
num_frames=num_frames,
generator=torch.Generator().manual_seed(1337),
).frames[0]
# ํ์ฒ๋ฆฌ: ํ๋ ์ ๊ฐ ๋ณด๊ฐ์ ํตํ ๋ถ๋๋ฌ์ด ์ ํ
interpolated_frames = []
for i in range(len(video) - 1):
interpolated_frames.append(video[i])
interpolated_frames.append(Image.blend(video[i], video[i+1], 0.5))
interpolated_frames.append(video[-1])
export_to_gif(interpolated_frames, "output.gif")
return "output.gif"
demo = gr.Interface(
fn=generate_video,
inputs=[
gr.Textbox(label="Prompt (ํ๊ธ ๋๋ ์์ด)", value="๊ท์ฌ์ด ๊ฐ์์ง๊ฐ ์กฐ์ฉํ ์ง๊ณ ์, ๊ฑธ์, ๊ณ ํ์ง"),
gr.Textbox(label="Negative Prompt (ํ๊ธ ๋๋ ์์ด)", value="์ ํ์ง, ์ต์
์ ํ์ง, ๋ ํฐ๋ฐ์ค"),
gr.Slider(label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=150),
gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"),
gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0),
gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=512),
gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=512),
gr.Slider(label="Number of Frames", minimum=16, maximum=128, step=16, value=64)
],
outputs=gr.Image(label="Generated Video"),
title="AnimateDiffSparseControlNetPipeline์ ์ฌ์ฉํ ๊ณ ํ์ง ๋น๋์ค ์์ฑ",
description="AnimateDiffSparseControlNetPipeline์ ์ฌ์ฉํ์ฌ ๊ณ ํ์ง ๋น๋์ค๋ฅผ ์์ฑํฉ๋๋ค. ํ๊ธ ๋๋ ์์ด๋ก ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ ์ ์์ต๋๋ค."
)
demo.launch() |