File size: 4,357 Bytes
35d6846
 
93c305a
35d6846
93c305a
18e9814
 
35d6846
 
 
93c305a
 
 
 
 
 
 
 
18e9814
93c305a
 
 
35d6846
 
 
a9f93ea
111a3cd
 
35d6846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f028eb9
 
 
35d6846
 
 
 
 
 
97d09e9
18e9814
 
 
35d6846
97d09e9
35d6846
18e9814
 
 
 
 
 
 
 
cdb7645
35d6846
93c305a
35d6846
 
18e9814
93c305a
18e9814
97d09e9
18e9814
 
 
 
35d6846
97d09e9
18e9814
 
35d6846
 
cdb7645
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import gradio as gr
from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel
from diffusers.utils import export_to_gif, load_image
from transformers import pipeline
from PIL import Image
import numpy as np

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

def translate_korean_to_english(text):
    if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
        translated = translator(text)[0]['translation_text']
        return translated
    return text

def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale, width, height, num_frames):
    prompt = translate_korean_to_english(prompt)
    negative_prompt = translate_korean_to_english(negative_prompt)

    motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device)
    controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
    vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device)
    
    pipe = AnimateDiffPipeline.from_pretrained(
        "SG161222/Realistic_Vision_V6.0_B1_noVAE",
        motion_adapter=motion_adapter,
        controlnet=controlnet,
        vae=vae,
        torch_dtype=torch.float16,
    ).to(device)
    
    pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++", use_karras_sigmas=True)
    
    image_files = [
        "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
        "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
        "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png"
    ]
    conditioning_frames = [load_image(img_file) for img_file in image_files]

    conditioning_frame_indices = eval(conditioning_frame_indices)
    controlnet_conditioning_scale = float(controlnet_conditioning_scale)

    video = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        conditioning_frames=conditioning_frames,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        controlnet_frame_indices=conditioning_frame_indices,
        width=width,
        height=height,
        num_frames=num_frames,
        generator=torch.Generator().manual_seed(1337),
    ).frames[0]
    
    # 후처리: 프레임 간 보간을 통한 부드러운 전환
    interpolated_frames = []
    for i in range(len(video) - 1):
        interpolated_frames.append(video[i])
        interpolated_frames.append(Image.blend(video[i], video[i+1], 0.5))
    interpolated_frames.append(video[-1])
    
    export_to_gif(interpolated_frames, "output.gif")
    return "output.gif"

demo = gr.Interface(
    fn=generate_video,
    inputs=[
        gr.Textbox(label="Prompt (한글 또는 영어)", value="귀여운 강아지가 조용히 짖고있, 걸작, 고품질"),
        gr.Textbox(label="Negative Prompt (한글 또는 영어)", value="저품질, 최악의 품질, 레터박스"),
        gr.Slider(label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=150),
        gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"),
        gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0),
        gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=512),
        gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=512),
        gr.Slider(label="Number of Frames", minimum=16, maximum=128, step=16, value=64)
    ],
    outputs=gr.Image(label="Generated Video"),
    title="AnimateDiffSparseControlNetPipeline을 사용한 고품질 비디오 생성",
    description="AnimateDiffSparseControlNetPipeline을 사용하여 고품질 비디오를 생성합니다. 한글 또는 영어로 프롬프트를 입력할 수 있습니다."
)

demo.launch()