Spaces:
Paused
Paused
File size: 4,357 Bytes
35d6846 93c305a 35d6846 93c305a 18e9814 35d6846 93c305a 18e9814 93c305a 35d6846 a9f93ea 111a3cd 35d6846 f028eb9 35d6846 97d09e9 18e9814 35d6846 97d09e9 35d6846 18e9814 cdb7645 35d6846 93c305a 35d6846 18e9814 93c305a 18e9814 97d09e9 18e9814 35d6846 97d09e9 18e9814 35d6846 cdb7645 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import torch
import gradio as gr
from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel
from diffusers.utils import export_to_gif, load_image
from transformers import pipeline
from PIL import Image
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
def translate_korean_to_english(text):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
translated = translator(text)[0]['translation_text']
return translated
return text
def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale, width, height, num_frames):
prompt = translate_korean_to_english(prompt)
negative_prompt = translate_korean_to_english(negative_prompt)
motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device)
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device)
pipe = AnimateDiffPipeline.from_pretrained(
"SG161222/Realistic_Vision_V6.0_B1_noVAE",
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
torch_dtype=torch.float16,
).to(device)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++", use_karras_sigmas=True)
image_files = [
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png"
]
conditioning_frames = [load_image(img_file) for img_file in image_files]
conditioning_frame_indices = eval(conditioning_frame_indices)
controlnet_conditioning_scale = float(controlnet_conditioning_scale)
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
conditioning_frames=conditioning_frames,
controlnet_conditioning_scale=controlnet_conditioning_scale,
controlnet_frame_indices=conditioning_frame_indices,
width=width,
height=height,
num_frames=num_frames,
generator=torch.Generator().manual_seed(1337),
).frames[0]
# 후처리: 프레임 간 보간을 통한 부드러운 전환
interpolated_frames = []
for i in range(len(video) - 1):
interpolated_frames.append(video[i])
interpolated_frames.append(Image.blend(video[i], video[i+1], 0.5))
interpolated_frames.append(video[-1])
export_to_gif(interpolated_frames, "output.gif")
return "output.gif"
demo = gr.Interface(
fn=generate_video,
inputs=[
gr.Textbox(label="Prompt (한글 또는 영어)", value="귀여운 강아지가 조용히 짖고있, 걸작, 고품질"),
gr.Textbox(label="Negative Prompt (한글 또는 영어)", value="저품질, 최악의 품질, 레터박스"),
gr.Slider(label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=150),
gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"),
gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0),
gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=512),
gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=512),
gr.Slider(label="Number of Frames", minimum=16, maximum=128, step=16, value=64)
],
outputs=gr.Image(label="Generated Video"),
title="AnimateDiffSparseControlNetPipeline을 사용한 고품질 비디오 생성",
description="AnimateDiffSparseControlNetPipeline을 사용하여 고품질 비디오를 생성합니다. 한글 또는 영어로 프롬프트를 입력할 수 있습니다."
)
demo.launch() |