kaimoviestud / app-backup2.py
seawolf2357's picture
Rename app (10).py to app-backup2.py
832e2a9 verified
import spaces
import gradio as gr
import os
import sys
import argparse
import random
import time
import numpy as np
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling,
load_model_checkpoint,
get_latent_z,
save_videos
)
from transformers import pipeline
from diffusers import DiffusionPipeline
# ์ƒ์ˆ˜ ์ •์˜
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# DynamiCrafter ๋ชจ๋ธ ์„ค์ •
def download_model():
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
filename_list = ['model.ckpt']
if not os.path.exists('./checkpoints/dynamicrafter_1024_v1/'):
os.makedirs('./checkpoints/dynamicrafter_1024_v1/')
for filename in filename_list:
local_file = os.path.join('./checkpoints/dynamicrafter_1024_v1/', filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True)
# ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ ์‹คํ–‰
download_model()
ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt'
config_file='configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
model = model.cuda()
# ๋ฒˆ์—ญ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
import torch
from diffusers import DiffusionPipeline
# FLUX ๋ชจ๋ธ ์„ค์ •
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
# ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™” (GPU ์‚ฌ์šฉ ์‹œ์—๋งŒ ์ ์šฉ)
if torch.cuda.is_available():
pipe.enable_attention_slicing()
@spaces.GPU(duration=300)
def infer_t2i(prompt, seed=42, randomize_seed=False, width=1024, height=576, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
translated = translator(prompt, max_length=512)[0]['translation_text']
prompt = translated
print(f"Translated prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
with torch.no_grad():
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
torch.cuda.empty_cache()
return image, seed, prompt # ๋ฒˆ์—ญ๋œ ํ”„๋กฌํ”„ํŠธ๋„ ๋ฐ˜ํ™˜
@spaces.GPU(duration=300)
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
# ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
translated = translator(prompt, max_length=512)[0]['translation_text']
prompt = translated
print(f"Translated prompt: {prompt}")
resolution = (576, 1024)
save_fps = 8
seed_everything(seed)
transform = transforms.Compose([
transforms.Resize(min(resolution)),
transforms.CenterCrop(resolution),
])
torch.cuda.empty_cache()
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
start = time.time()
if steps > 60:
steps = 60
batch_size=1
channels = model.model.diffusion_model.out_channels
frames = int(video_length * save_fps) # ๋น„๋””์˜ค ๊ธธ์ด์— ๋”ฐ๋ฅธ ํ”„๋ ˆ์ž„ ์ˆ˜ ๊ณ„์‚ฐ
h, w = resolution[0] // 8, resolution[1] // 8
noise_shape = [batch_size, channels, frames, h, w]
# text cond
with torch.no_grad(), torch.cuda.amp.autocast():
text_emb = model.get_learned_conditioning([prompt])
# img cond
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
img_tensor = (img_tensor / 255. - 0.5) * 2
image_tensor_resized = transform(img_tensor) #3,256,256
videos = image_tensor_resized.unsqueeze(0) # bchw
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
img_emb = model.image_proj_model(cond_images)
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
## inference
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
## b,samples,c,t,h,w
video_path = './output.mp4'
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
return video_path
i2v_examples = [
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123, 2],
]
css = """
.tab-nav {
border-bottom: 2px solid #ddd;
padding: 0;
margin-bottom: 20px;
}
.tab-nav button {
background-color: #f8f8f8;
border: none;
outline: none;
cursor: pointer;
padding: 10px 20px;
transition: 0.3s;
font-size: 16px;
border-radius: 10px 10px 0 0;
margin-right: 5px;
}
.tab-nav button:hover {
background-color: #ddd;
}
.tab-nav button.selected {
background-color: #fff;
border: 2px solid #ddd;
border-bottom: 2px solid #fff;
font-weight: bold;
}
.tab-content {
padding: 20px;
border: 2px solid #ddd;
border-radius: 0 10px 10px 10px;
}
/* ํƒญ๋ณ„ ์ƒ‰์ƒ */
.tab-nav button:nth-child(1) { border-top: 3px solid #ff6b6b; }
.tab-nav button:nth-child(2) { border-top: 3px solid #4ecdc4; }
.tab-nav button:nth-child(3) { border-top: 3px solid #f7b731; }
"""
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
gr.Markdown("์ด๋ฏธ์ง€๋กœ ์˜์ƒ ์ƒ์„ฑ ํ…Œ์ŠคํŠธ (ํ•œ๊ธ€ ํ”„๋กฌํ”„ํŠธ ์ง€์›)")
with gr.Tab(label='Image+Text to Video'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
with gr.Row():
i2v_input_text = gr.Text(label='Prompts')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=3.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30)
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=8)
with gr.Row():
i2v_video_length = gr.Slider(minimum=2, maximum=8, step=1, elem_id="i2v_video_length", label="Video Length (seconds)", value=2)
i2v_end_btn = gr.Button("Generate")
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=i2v_examples,
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
outputs=[i2v_output_video],
fn = infer,
cache_examples=True,
)
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
outputs=[i2v_output_video],
fn = infer
)
with gr.Tab(label='Text to Image'):
with gr.Column():
with gr.Row():
t2i_input_text = gr.Text(label='Prompt')
with gr.Row():
t2i_seed = gr.Slider(label='Seed', minimum=0, maximum=MAX_SEED, step=1, value=42)
t2i_randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
with gr.Row():
t2i_width = gr.Slider(label='Width', minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024)
t2i_height = gr.Slider(label='Height', minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=576)
with gr.Row():
t2i_guidance_scale = gr.Slider(label='Guidance Scale', minimum=1.0, maximum=20.0, step=0.1, value=5.0)
t2i_num_inference_steps = gr.Slider(label='Inference Steps', minimum=1, maximum=100, step=1, value=28)
# t2i_generate_btn = gr.Button("Generate")
# t2i_output_image = gr.Image(label="Generated Image", elem_id="t2i_output_img")
# t2i_output_seed = gr.Number(label="Used Seed", elem_id="t2i_output_seed")
t2i_generate_btn = gr.Button("Generate")
t2i_output_image = gr.Image(label="Generated Image", elem_id="t2i_output_img")
t2i_output_seed = gr.Number(label="Used Seed", elem_id="t2i_output_seed")
t2i_translated_prompt = gr.Text(label="Translated Prompt (if applicable)", elem_id="t2i_translated_prompt")
t2i_generate_btn.click(
fn=infer_t2i,
inputs=[t2i_input_text, t2i_seed, t2i_randomize_seed, t2i_width, t2i_height, t2i_guidance_scale, t2i_num_inference_steps],
outputs=[t2i_output_image, t2i_output_seed, t2i_translated_prompt]
)
dynamicrafter_iface.queue(max_size=12).launch(show_api=True)