Spaces:
Paused
Paused
import spaces | |
import gradio as gr | |
import os | |
import sys | |
import argparse | |
import random | |
import time | |
import numpy as np | |
from omegaconf import OmegaConf | |
import torch | |
import torchvision | |
from pytorch_lightning import seed_everything | |
from huggingface_hub import hf_hub_download | |
from einops import repeat | |
import torchvision.transforms as transforms | |
from utils.utils import instantiate_from_config | |
sys.path.insert(0, "scripts/evaluation") | |
from funcs import ( | |
batch_ddim_sampling, | |
load_model_checkpoint, | |
get_latent_z, | |
save_videos | |
) | |
from transformers import pipeline | |
from diffusers import DiffusionPipeline | |
# ์์ ์ ์ | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# DynamiCrafter ๋ชจ๋ธ ์ค์ | |
def download_model(): | |
REPO_ID = 'Doubiiu/DynamiCrafter_1024' | |
filename_list = ['model.ckpt'] | |
if not os.path.exists('./checkpoints/dynamicrafter_1024_v1/'): | |
os.makedirs('./checkpoints/dynamicrafter_1024_v1/') | |
for filename in filename_list: | |
local_file = os.path.join('./checkpoints/dynamicrafter_1024_v1/', filename) | |
if not os.path.exists(local_file): | |
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True) | |
# ๋ชจ๋ธ ๋ค์ด๋ก๋ ์คํ | |
download_model() | |
ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt' | |
config_file='configs/inference_1024_v1.0.yaml' | |
config = OmegaConf.load(config_file) | |
model_config = config.pop("model", OmegaConf.create()) | |
model_config['params']['unet_config']['params']['use_checkpoint']=False | |
model = instantiate_from_config(model_config) | |
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!" | |
model = load_model_checkpoint(model, ckpt_path) | |
model.eval() | |
model = model.cuda() | |
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
import torch | |
from diffusers import DiffusionPipeline | |
# FLUX ๋ชจ๋ธ ์ค์ | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16) | |
pipe.enable_model_cpu_offload() | |
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ (GPU ์ฌ์ฉ ์์๋ง ์ ์ฉ) | |
if torch.cuda.is_available(): | |
pipe.enable_attention_slicing() | |
def infer_t2i(prompt, seed=42, randomize_seed=False, width=1024, height=576, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
# ํ๊ธ ์ ๋ ฅ ๊ฐ์ง ๋ฐ ๋ฒ์ญ | |
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt): | |
translated = translator(prompt, max_length=512)[0]['translation_text'] | |
prompt = translated | |
print(f"Translated prompt: {prompt}") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
with torch.no_grad(): | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale | |
).images[0] | |
torch.cuda.empty_cache() | |
return image, seed, prompt # ๋ฒ์ญ๋ ํ๋กฌํํธ๋ ๋ฐํ | |
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2): | |
# ํ๊ธ ์ ๋ ฅ ๊ฐ์ง ๋ฐ ๋ฒ์ญ | |
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt): | |
translated = translator(prompt, max_length=512)[0]['translation_text'] | |
prompt = translated | |
print(f"Translated prompt: {prompt}") | |
resolution = (576, 1024) | |
save_fps = 8 | |
seed_everything(seed) | |
transform = transforms.Compose([ | |
transforms.Resize(min(resolution)), | |
transforms.CenterCrop(resolution), | |
]) | |
torch.cuda.empty_cache() | |
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) | |
start = time.time() | |
if steps > 60: | |
steps = 60 | |
batch_size=1 | |
channels = model.model.diffusion_model.out_channels | |
frames = int(video_length * save_fps) # ๋น๋์ค ๊ธธ์ด์ ๋ฐ๋ฅธ ํ๋ ์ ์ ๊ณ์ฐ | |
h, w = resolution[0] // 8, resolution[1] // 8 | |
noise_shape = [batch_size, channels, frames, h, w] | |
# text cond | |
with torch.no_grad(), torch.cuda.amp.autocast(): | |
text_emb = model.get_learned_conditioning([prompt]) | |
# img cond | |
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device) | |
img_tensor = (img_tensor / 255. - 0.5) * 2 | |
image_tensor_resized = transform(img_tensor) #3,256,256 | |
videos = image_tensor_resized.unsqueeze(0) # bchw | |
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw | |
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames) | |
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc | |
img_emb = model.image_proj_model(cond_images) | |
imtext_cond = torch.cat([text_emb, img_emb], dim=1) | |
fs = torch.tensor([fs], dtype=torch.long, device=model.device) | |
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]} | |
## inference | |
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale) | |
## b,samples,c,t,h,w | |
video_path = './output.mp4' | |
save_videos(batch_samples, './', filenames=['output'], fps=save_fps) | |
return video_path | |
i2v_examples = [ | |
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123, 2], | |
] | |
css = """ | |
.tab-nav { | |
border-bottom: 2px solid #ddd; | |
padding: 0; | |
margin-bottom: 20px; | |
} | |
.tab-nav button { | |
background-color: #f8f8f8; | |
border: none; | |
outline: none; | |
cursor: pointer; | |
padding: 10px 20px; | |
transition: 0.3s; | |
font-size: 16px; | |
border-radius: 10px 10px 0 0; | |
margin-right: 5px; | |
} | |
.tab-nav button:hover { | |
background-color: #ddd; | |
} | |
.tab-nav button.selected { | |
background-color: #fff; | |
border: 2px solid #ddd; | |
border-bottom: 2px solid #fff; | |
font-weight: bold; | |
} | |
.tab-content { | |
padding: 20px; | |
border: 2px solid #ddd; | |
border-radius: 0 10px 10px 10px; | |
} | |
/* ํญ๋ณ ์์ */ | |
.tab-nav button:nth-child(1) { border-top: 3px solid #ff6b6b; } | |
.tab-nav button:nth-child(2) { border-top: 3px solid #4ecdc4; } | |
.tab-nav button:nth-child(3) { border-top: 3px solid #f7b731; } | |
""" | |
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface: | |
gr.Markdown("์ด๋ฏธ์ง๋ก ์์ ์์ฑ ํ ์คํธ (ํ๊ธ ํ๋กฌํํธ ์ง์)") | |
with gr.Tab(label='Image+Text to Video'): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img") | |
with gr.Row(): | |
i2v_input_text = gr.Text(label='Prompts') | |
with gr.Row(): | |
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123) | |
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta") | |
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=3.5, elem_id="i2v_cfg_scale") | |
with gr.Row(): | |
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30) | |
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=8) | |
with gr.Row(): | |
i2v_video_length = gr.Slider(minimum=2, maximum=8, step=1, elem_id="i2v_video_length", label="Video Length (seconds)", value=2) | |
i2v_end_btn = gr.Button("Generate") | |
with gr.Row(): | |
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True) | |
gr.Examples(examples=i2v_examples, | |
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length], | |
outputs=[i2v_output_video], | |
fn = infer, | |
cache_examples=True, | |
) | |
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length], | |
outputs=[i2v_output_video], | |
fn = infer | |
) | |
with gr.Tab(label='Text to Image'): | |
with gr.Column(): | |
with gr.Row(): | |
t2i_input_text = gr.Text(label='Prompt') | |
with gr.Row(): | |
t2i_seed = gr.Slider(label='Seed', minimum=0, maximum=MAX_SEED, step=1, value=42) | |
t2i_randomize_seed = gr.Checkbox(label='Randomize seed', value=False) | |
with gr.Row(): | |
t2i_width = gr.Slider(label='Width', minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024) | |
t2i_height = gr.Slider(label='Height', minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=576) | |
with gr.Row(): | |
t2i_guidance_scale = gr.Slider(label='Guidance Scale', minimum=1.0, maximum=20.0, step=0.1, value=5.0) | |
t2i_num_inference_steps = gr.Slider(label='Inference Steps', minimum=1, maximum=100, step=1, value=28) | |
# t2i_generate_btn = gr.Button("Generate") | |
# t2i_output_image = gr.Image(label="Generated Image", elem_id="t2i_output_img") | |
# t2i_output_seed = gr.Number(label="Used Seed", elem_id="t2i_output_seed") | |
t2i_generate_btn = gr.Button("Generate") | |
t2i_output_image = gr.Image(label="Generated Image", elem_id="t2i_output_img") | |
t2i_output_seed = gr.Number(label="Used Seed", elem_id="t2i_output_seed") | |
t2i_translated_prompt = gr.Text(label="Translated Prompt (if applicable)", elem_id="t2i_translated_prompt") | |
t2i_generate_btn.click( | |
fn=infer_t2i, | |
inputs=[t2i_input_text, t2i_seed, t2i_randomize_seed, t2i_width, t2i_height, t2i_guidance_scale, t2i_num_inference_steps], | |
outputs=[t2i_output_image, t2i_output_seed, t2i_translated_prompt] | |
) | |
dynamicrafter_iface.queue(max_size=12).launch(show_api=True) |