vivym's picture
init
4a582ec
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import string
import cv2
import numpy as np
from paddleseg.transforms import functional
from paddleseg.cvlibs import manager
from paddleseg.utils import seg_env
from PIL import Image
@manager.TRANSFORMS.add_component
class Compose:
"""
Do transformation on input data with corresponding pre-processing and augmentation operations.
The shape of input data to all operations is [height, width, channels].
"""
def __init__(self, transforms, to_rgb=True):
if not isinstance(transforms, list):
raise TypeError('The transforms must be a list!')
self.transforms = transforms
self.to_rgb = to_rgb
def __call__(self, data):
"""
Args:
data (dict): The data to transform.
Returns:
dict: Data after transformation
"""
if 'trans_info' not in data:
data['trans_info'] = []
for op in self.transforms:
data = op(data)
if data is None:
return None
data['img'] = np.transpose(data['img'], (2, 0, 1))
for key in data.get('gt_fields', []):
if len(data[key].shape) == 2:
continue
data[key] = np.transpose(data[key], (2, 0, 1))
return data
@manager.TRANSFORMS.add_component
class LoadImages:
def __init__(self, to_rgb=False):
self.to_rgb = to_rgb
def __call__(self, data):
if isinstance(data['img'], str):
data['img'] = cv2.imread(data['img'])
for key in data.get('gt_fields', []):
if isinstance(data[key], str):
data[key] = cv2.imread(data[key], cv2.IMREAD_UNCHANGED)
# if alpha and trimap has 3 channels, extract one.
if key in ['alpha', 'trimap']:
if len(data[key].shape) > 2:
data[key] = data[key][:, :, 0]
if self.to_rgb:
data['img'] = cv2.cvtColor(data['img'], cv2.COLOR_BGR2RGB)
for key in data.get('gt_fields', []):
if len(data[key].shape) == 2:
continue
data[key] = cv2.cvtColor(data[key], cv2.COLOR_BGR2RGB)
return data
@manager.TRANSFORMS.add_component
class Resize:
def __init__(self, target_size=(512, 512), random_interp=False):
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'`target_size` should include 2 elements, but it is {}'.
format(target_size))
else:
raise TypeError(
"Type of `target_size` is invalid. It should be list or tuple, but it is {}"
.format(type(target_size)))
self.target_size = target_size
self.random_interp = random_interp
self.interps = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC]
def __call__(self, data):
if self.random_interp:
interp = np.random.choice(self.interps)
else:
interp = cv2.INTER_LINEAR
data['trans_info'].append(('resize', data['img'].shape[0:2]))
data['img'] = functional.resize(data['img'], self.target_size, interp)
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize(data[key], self.target_size,
cv2.INTER_NEAREST)
else:
data[key] = functional.resize(data[key], self.target_size,
interp)
return data
@manager.TRANSFORMS.add_component
class RandomResize:
"""
Resize image to a size determinned by `scale` and `size`.
Args:
size(tuple|list): The reference size to resize. A tuple or list with length 2.
scale(tupel|list, optional): A range of scale base on `size`. A tuple or list with length 2. Default: None.
"""
def __init__(self, size=None, scale=None):
if isinstance(size, list) or isinstance(size, tuple):
if len(size) != 2:
raise ValueError(
'`size` should include 2 elements, but it is {}'.format(
size))
elif size is not None:
raise TypeError(
"Type of `size` is invalid. It should be list or tuple, but it is {}"
.format(type(size)))
if scale is not None:
if isinstance(scale, list) or isinstance(scale, tuple):
if len(scale) != 2:
raise ValueError(
'`scale` should include 2 elements, but it is {}'.
format(scale))
else:
raise TypeError(
"Type of `scale` is invalid. It should be list or tuple, but it is {}"
.format(type(scale)))
self.size = size
self.scale = scale
def __call__(self, data):
h, w = data['img'].shape[:2]
if self.scale is not None:
scale = np.random.uniform(self.scale[0], self.scale[1])
else:
scale = 1.
if self.size is not None:
scale_factor = max(self.size[0] / w, self.size[1] / h)
else:
scale_factor = 1
scale = scale * scale_factor
w = int(round(w * scale))
h = int(round(h * scale))
data['img'] = functional.resize(data['img'], (w, h))
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize(data[key], (w, h),
cv2.INTER_NEAREST)
else:
data[key] = functional.resize(data[key], (w, h))
return data
@manager.TRANSFORMS.add_component
class ResizeByLong:
"""
Resize the long side of an image to given size, and then scale the other side proportionally.
Args:
long_size (int): The target size of long side.
"""
def __init__(self, long_size):
self.long_size = long_size
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
data['img'] = functional.resize_long(data['img'], self.long_size)
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize_long(data[key], self.long_size,
cv2.INTER_NEAREST)
else:
data[key] = functional.resize_long(data[key], self.long_size)
return data
@manager.TRANSFORMS.add_component
class ResizeByShort:
"""
Resize the short side of an image to given size, and then scale the other side proportionally.
Args:
short_size (int): The target size of short side.
"""
def __init__(self, short_size):
self.short_size = short_size
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
data['img'] = functional.resize_short(data['img'], self.short_size)
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize_short(data[key], self.short_size,
cv2.INTER_NEAREST)
else:
data[key] = functional.resize_short(data[key], self.short_size)
return data
@manager.TRANSFORMS.add_component
class ResizeToIntMult:
"""
Resize to some int muitple, d.g. 32.
"""
def __init__(self, mult_int=32):
self.mult_int = mult_int
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
h, w = data['img'].shape[0:2]
rw = w - w % self.mult_int
rh = h - h % self.mult_int
data['img'] = functional.resize(data['img'], (rw, rh))
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize(data[key], (rw, rh),
cv2.INTER_NEAREST)
else:
data[key] = functional.resize(data[key], (rw, rh))
return data
@manager.TRANSFORMS.add_component
class Normalize:
"""
Normalize an image.
Args:
mean (list, optional): The mean value of a data set. Default: [0.5, 0.5, 0.5].
std (list, optional): The standard deviation of a data set. Default: [0.5, 0.5, 0.5].
Raises:
ValueError: When mean/std is not list or any value in std is 0.
"""
def __init__(self, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
self.mean = mean
self.std = std
if not (isinstance(self.mean,
(list, tuple)) and isinstance(self.std,
(list, tuple))):
raise ValueError(
"{}: input type is invalid. It should be list or tuple".format(
self))
from functools import reduce
if reduce(lambda x, y: x * y, self.std) == 0:
raise ValueError('{}: std is invalid!'.format(self))
def __call__(self, data):
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
data['img'] = functional.normalize(data['img'], mean, std)
if 'fg' in data.get('gt_fields', []):
data['fg'] = functional.normalize(data['fg'], mean, std)
if 'bg' in data.get('gt_fields', []):
data['bg'] = functional.normalize(data['bg'], mean, std)
return data
@manager.TRANSFORMS.add_component
class RandomCropByAlpha:
"""
Randomly crop while centered on uncertain area by a certain probability.
Args:
crop_size (tuple|list): The size you want to crop from image.
p (float): The probability centered on uncertain area.
"""
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640)),
prob=0.5):
self.crop_size = crop_size
self.prob = prob
def __call__(self, data):
idex = np.random.randint(low=0, high=len(self.crop_size))
crop_w, crop_h = self.crop_size[idex]
img_h = data['img'].shape[0]
img_w = data['img'].shape[1]
if np.random.rand() < self.prob:
crop_center = np.where((data['alpha'] > 0) & (data['alpha'] < 255))
center_h_array, center_w_array = crop_center
if len(center_h_array) == 0:
return data
rand_ind = np.random.randint(len(center_h_array))
center_h = center_h_array[rand_ind]
center_w = center_w_array[rand_ind]
delta_h = crop_h // 2
delta_w = crop_w // 2
start_h = max(0, center_h - delta_h)
start_w = max(0, center_w - delta_w)
else:
start_h = 0
start_w = 0
if img_h > crop_h:
start_h = np.random.randint(img_h - crop_h + 1)
if img_w > crop_w:
start_w = np.random.randint(img_w - crop_w + 1)
end_h = min(img_h, start_h + crop_h)
end_w = min(img_w, start_w + crop_w)
data['img'] = data['img'][start_h:end_h, start_w:end_w]
for key in data.get('gt_fields', []):
data[key] = data[key][start_h:end_h, start_w:end_w]
return data
@manager.TRANSFORMS.add_component
class RandomCrop:
"""
Randomly crop
Args:
crop_size (tuple|list): The size you want to crop from image.
"""
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640))):
if not isinstance(crop_size[0], (list, tuple)):
crop_size = [crop_size]
self.crop_size = crop_size
def __call__(self, data):
idex = np.random.randint(low=0, high=len(self.crop_size))
crop_w, crop_h = self.crop_size[idex]
img_h, img_w = data['img'].shape[0:2]
start_h = 0
start_w = 0
if img_h > crop_h:
start_h = np.random.randint(img_h - crop_h + 1)
if img_w > crop_w:
start_w = np.random.randint(img_w - crop_w + 1)
end_h = min(img_h, start_h + crop_h)
end_w = min(img_w, start_w + crop_w)
data['img'] = data['img'][start_h:end_h, start_w:end_w]
for key in data.get('gt_fields', []):
data[key] = data[key][start_h:end_h, start_w:end_w]
return data
@manager.TRANSFORMS.add_component
class LimitLong:
"""
Limit the long edge of image.
If the long edge is larger than max_long, resize the long edge
to max_long, while scale the short edge proportionally.
If the long edge is smaller than min_long, resize the long edge
to min_long, while scale the short edge proportionally.
Args:
max_long (int, optional): If the long edge of image is larger than max_long,
it will be resize to max_long. Default: None.
min_long (int, optional): If the long edge of image is smaller than min_long,
it will be resize to min_long. Default: None.
"""
def __init__(self, max_long=None, min_long=None):
if max_long is not None:
if not isinstance(max_long, int):
raise TypeError(
"Type of `max_long` is invalid. It should be int, but it is {}"
.format(type(max_long)))
if min_long is not None:
if not isinstance(min_long, int):
raise TypeError(
"Type of `min_long` is invalid. It should be int, but it is {}"
.format(type(min_long)))
if (max_long is not None) and (min_long is not None):
if min_long > max_long:
raise ValueError(
'`max_long should not smaller than min_long, but they are {} and {}'
.format(max_long, min_long))
self.max_long = max_long
self.min_long = min_long
def __call__(self, data):
h, w = data['img'].shape[:2]
long_edge = max(h, w)
target = long_edge
if (self.max_long is not None) and (long_edge > self.max_long):
target = self.max_long
elif (self.min_long is not None) and (long_edge < self.min_long):
target = self.min_long
data['trans_info'].append(('resize', data['img'].shape[0:2]))
if target != long_edge:
data['img'] = functional.resize_long(data['img'], target)
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize_long(data[key], target,
cv2.INTER_NEAREST)
else:
data[key] = functional.resize_long(data[key], target)
return data
@manager.TRANSFORMS.add_component
class LimitShort:
"""
Limit the short edge of image.
If the short edge is larger than max_short, resize the short edge
to max_short, while scale the long edge proportionally.
If the short edge is smaller than min_short, resize the short edge
to min_short, while scale the long edge proportionally.
Args:
max_short (int, optional): If the short edge of image is larger than max_short,
it will be resize to max_short. Default: None.
min_short (int, optional): If the short edge of image is smaller than min_short,
it will be resize to min_short. Default: None.
"""
def __init__(self, max_short=None, min_short=None):
if max_short is not None:
if not isinstance(max_short, int):
raise TypeError(
"Type of `max_short` is invalid. It should be int, but it is {}"
.format(type(max_short)))
if min_short is not None:
if not isinstance(min_short, int):
raise TypeError(
"Type of `min_short` is invalid. It should be int, but it is {}"
.format(type(min_short)))
if (max_short is not None) and (min_short is not None):
if min_short > max_short:
raise ValueError(
'`max_short should not smaller than min_short, but they are {} and {}'
.format(max_short, min_short))
self.max_short = max_short
self.min_short = min_short
def __call__(self, data):
h, w = data['img'].shape[:2]
short_edge = min(h, w)
target = short_edge
if (self.max_short is not None) and (short_edge > self.max_short):
target = self.max_short
elif (self.min_short is not None) and (short_edge < self.min_short):
target = self.min_short
data['trans_info'].append(('resize', data['img'].shape[0:2]))
if target != short_edge:
data['img'] = functional.resize_short(data['img'], target)
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize_short(data[key], target,
cv2.INTER_NEAREST)
else:
data[key] = functional.resize_short(data[key], target)
return data
@manager.TRANSFORMS.add_component
class RandomHorizontalFlip:
"""
Flip an image horizontally with a certain probability.
Args:
prob (float, optional): A probability of horizontally flipping. Default: 0.5.
"""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, data):
if random.random() < self.prob:
data['img'] = functional.horizontal_flip(data['img'])
for key in data.get('gt_fields', []):
data[key] = functional.horizontal_flip(data[key])
return data
@manager.TRANSFORMS.add_component
class RandomBlur:
"""
Blurring an image by a Gaussian function with a certain probability.
Args:
prob (float, optional): A probability of blurring an image. Default: 0.1.
"""
def __init__(self, prob=0.1):
self.prob = prob
def __call__(self, data):
if self.prob <= 0:
n = 0
elif self.prob >= 1:
n = 1
else:
n = int(1.0 / self.prob)
if n > 0:
if np.random.randint(0, n) == 0:
radius = np.random.randint(3, 10)
if radius % 2 != 1:
radius = radius + 1
if radius > 9:
radius = 9
data['img'] = cv2.GaussianBlur(data['img'], (radius, radius), 0,
0)
for key in data.get('gt_fields', []):
if key == 'trimap':
continue
data[key] = cv2.GaussianBlur(data[key], (radius, radius), 0,
0)
return data
@manager.TRANSFORMS.add_component
class RandomDistort:
"""
Distort an image with random configurations.
Args:
brightness_range (float, optional): A range of brightness. Default: 0.5.
brightness_prob (float, optional): A probability of adjusting brightness. Default: 0.5.
contrast_range (float, optional): A range of contrast. Default: 0.5.
contrast_prob (float, optional): A probability of adjusting contrast. Default: 0.5.
saturation_range (float, optional): A range of saturation. Default: 0.5.
saturation_prob (float, optional): A probability of adjusting saturation. Default: 0.5.
hue_range (int, optional): A range of hue. Default: 18.
hue_prob (float, optional): A probability of adjusting hue. Default: 0.5.
"""
def __init__(self,
brightness_range=0.5,
brightness_prob=0.5,
contrast_range=0.5,
contrast_prob=0.5,
saturation_range=0.5,
saturation_prob=0.5,
hue_range=18,
hue_prob=0.5):
self.brightness_range = brightness_range
self.brightness_prob = brightness_prob
self.contrast_range = contrast_range
self.contrast_prob = contrast_prob
self.saturation_range = saturation_range
self.saturation_prob = saturation_prob
self.hue_range = hue_range
self.hue_prob = hue_prob
def __call__(self, data):
brightness_lower = 1 - self.brightness_range
brightness_upper = 1 + self.brightness_range
contrast_lower = 1 - self.contrast_range
contrast_upper = 1 + self.contrast_range
saturation_lower = 1 - self.saturation_range
saturation_upper = 1 + self.saturation_range
hue_lower = -self.hue_range
hue_upper = self.hue_range
ops = [
functional.brightness, functional.contrast, functional.saturation,
functional.hue
]
random.shuffle(ops)
params_dict = {
'brightness': {
'brightness_lower': brightness_lower,
'brightness_upper': brightness_upper
},
'contrast': {
'contrast_lower': contrast_lower,
'contrast_upper': contrast_upper
},
'saturation': {
'saturation_lower': saturation_lower,
'saturation_upper': saturation_upper
},
'hue': {
'hue_lower': hue_lower,
'hue_upper': hue_upper
}
}
prob_dict = {
'brightness': self.brightness_prob,
'contrast': self.contrast_prob,
'saturation': self.saturation_prob,
'hue': self.hue_prob
}
im = data['img'].astype('uint8')
im = Image.fromarray(im)
for id in range(len(ops)):
params = params_dict[ops[id].__name__]
params['im'] = im
prob = prob_dict[ops[id].__name__]
if np.random.uniform(0, 1) < prob:
im = ops[id](**params)
data['img'] = np.asarray(im)
for key in data.get('gt_fields', []):
if key in ['alpha', 'trimap']:
continue
else:
im = data[key].astype('uint8')
im = Image.fromarray(im)
for id in range(len(ops)):
params = params_dict[ops[id].__name__]
params['im'] = im
prob = prob_dict[ops[id].__name__]
if np.random.uniform(0, 1) < prob:
im = ops[id](**params)
data[key] = np.asarray(im)
return data
@manager.TRANSFORMS.add_component
class Padding:
"""
Add bottom-right padding to a raw image or annotation image.
Args:
target_size (list|tuple): The target size after padding.
im_padding_value (list, optional): The padding value of raw image.
Default: [127.5, 127.5, 127.5].
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
Raises:
TypeError: When target_size is neither list nor tuple.
ValueError: When the length of target_size is not 2.
"""
def __init__(self, target_size, im_padding_value=(127.5, 127.5, 127.5)):
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'`target_size` should include 2 elements, but it is {}'.
format(target_size))
else:
raise TypeError(
"Type of target_size is invalid. It should be list or tuple, now is {}"
.format(type(target_size)))
self.target_size = target_size
self.im_padding_value = im_padding_value
def __call__(self, data):
im_height, im_width = data['img'].shape[0], data['img'].shape[1]
target_height = self.target_size[1]
target_width = self.target_size[0]
pad_height = max(0, target_height - im_height)
pad_width = max(0, target_width - im_width)
data['trans_info'].append(('padding', data['img'].shape[0:2]))
if (pad_height == 0) and (pad_width == 0):
return data
else:
data['img'] = cv2.copyMakeBorder(
data['img'],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.im_padding_value)
for key in data.get('gt_fields', []):
if key in ['trimap', 'alpha']:
value = 0
else:
value = self.im_padding_value
data[key] = cv2.copyMakeBorder(
data[key],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=value)
return data
@manager.TRANSFORMS.add_component
class RandomSharpen:
def __init__(self, prob=0.1):
if prob < 0:
self.prob = 0
elif prob > 1:
self.prob = 1
else:
self.prob = prob
def __call__(self, data):
if np.random.rand() > self.prob:
return data
radius = np.random.choice([0, 3, 5, 7, 9])
w = np.random.uniform(0.1, 0.5)
blur_img = cv2.GaussianBlur(data['img'], (radius, radius), 5)
data['img'] = cv2.addWeighted(data['img'], 1 + w, blur_img, -w, 0)
for key in data.get('gt_fields', []):
if key == 'trimap' or key == 'alpha':
continue
blur_img = cv2.GaussianBlur(data[key], (0, 0), 5)
data[key] = cv2.addWeighted(data[key], 1.5, blur_img, -0.5, 0)
return data
@manager.TRANSFORMS.add_component
class RandomNoise:
def __init__(self, prob=0.1):
if prob < 0:
self.prob = 0
elif prob > 1:
self.prob = 1
else:
self.prob = prob
def __call__(self, data):
if np.random.rand() > self.prob:
return data
mean = np.random.uniform(0, 0.04)
var = np.random.uniform(0, 0.001)
noise = np.random.normal(mean, var**0.5, data['img'].shape) * 255
data['img'] = data['img'] + noise
data['img'] = np.clip(data['img'], 0, 255)
return data
@manager.TRANSFORMS.add_component
class RandomReJpeg:
def __init__(self, prob=0.1):
if prob < 0:
self.prob = 0
elif prob > 1:
self.prob = 1
else:
self.prob = prob
def __call__(self, data):
if np.random.rand() > self.prob:
return data
q = np.random.randint(70, 95)
img = data['img'].astype('uint8')
# Ensure no conflicts between processes
tmp_name = str(os.getpid()) + '.jpg'
tmp_name = os.path.join(seg_env.TMP_HOME, tmp_name)
cv2.imwrite(tmp_name, img, [int(cv2.IMWRITE_JPEG_QUALITY), q])
data['img'] = cv2.imread(tmp_name)
return data