Spaces:
Running
Running
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import random | |
import string | |
import cv2 | |
import numpy as np | |
from paddleseg.transforms import functional | |
from paddleseg.cvlibs import manager | |
from paddleseg.utils import seg_env | |
from PIL import Image | |
class Compose: | |
""" | |
Do transformation on input data with corresponding pre-processing and augmentation operations. | |
The shape of input data to all operations is [height, width, channels]. | |
""" | |
def __init__(self, transforms, to_rgb=True): | |
if not isinstance(transforms, list): | |
raise TypeError('The transforms must be a list!') | |
self.transforms = transforms | |
self.to_rgb = to_rgb | |
def __call__(self, data): | |
""" | |
Args: | |
data (dict): The data to transform. | |
Returns: | |
dict: Data after transformation | |
""" | |
if 'trans_info' not in data: | |
data['trans_info'] = [] | |
for op in self.transforms: | |
data = op(data) | |
if data is None: | |
return None | |
data['img'] = np.transpose(data['img'], (2, 0, 1)) | |
for key in data.get('gt_fields', []): | |
if len(data[key].shape) == 2: | |
continue | |
data[key] = np.transpose(data[key], (2, 0, 1)) | |
return data | |
class LoadImages: | |
def __init__(self, to_rgb=False): | |
self.to_rgb = to_rgb | |
def __call__(self, data): | |
if isinstance(data['img'], str): | |
data['img'] = cv2.imread(data['img']) | |
for key in data.get('gt_fields', []): | |
if isinstance(data[key], str): | |
data[key] = cv2.imread(data[key], cv2.IMREAD_UNCHANGED) | |
# if alpha and trimap has 3 channels, extract one. | |
if key in ['alpha', 'trimap']: | |
if len(data[key].shape) > 2: | |
data[key] = data[key][:, :, 0] | |
if self.to_rgb: | |
data['img'] = cv2.cvtColor(data['img'], cv2.COLOR_BGR2RGB) | |
for key in data.get('gt_fields', []): | |
if len(data[key].shape) == 2: | |
continue | |
data[key] = cv2.cvtColor(data[key], cv2.COLOR_BGR2RGB) | |
return data | |
class Resize: | |
def __init__(self, target_size=(512, 512), random_interp=False): | |
if isinstance(target_size, list) or isinstance(target_size, tuple): | |
if len(target_size) != 2: | |
raise ValueError( | |
'`target_size` should include 2 elements, but it is {}'. | |
format(target_size)) | |
else: | |
raise TypeError( | |
"Type of `target_size` is invalid. It should be list or tuple, but it is {}" | |
.format(type(target_size))) | |
self.target_size = target_size | |
self.random_interp = random_interp | |
self.interps = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC] | |
def __call__(self, data): | |
if self.random_interp: | |
interp = np.random.choice(self.interps) | |
else: | |
interp = cv2.INTER_LINEAR | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
data['img'] = functional.resize(data['img'], self.target_size, interp) | |
for key in data.get('gt_fields', []): | |
if key == 'trimap': | |
data[key] = functional.resize(data[key], self.target_size, | |
cv2.INTER_NEAREST) | |
else: | |
data[key] = functional.resize(data[key], self.target_size, | |
interp) | |
return data | |
class RandomResize: | |
""" | |
Resize image to a size determinned by `scale` and `size`. | |
Args: | |
size(tuple|list): The reference size to resize. A tuple or list with length 2. | |
scale(tupel|list, optional): A range of scale base on `size`. A tuple or list with length 2. Default: None. | |
""" | |
def __init__(self, size=None, scale=None): | |
if isinstance(size, list) or isinstance(size, tuple): | |
if len(size) != 2: | |
raise ValueError( | |
'`size` should include 2 elements, but it is {}'.format( | |
size)) | |
elif size is not None: | |
raise TypeError( | |
"Type of `size` is invalid. It should be list or tuple, but it is {}" | |
.format(type(size))) | |
if scale is not None: | |
if isinstance(scale, list) or isinstance(scale, tuple): | |
if len(scale) != 2: | |
raise ValueError( | |
'`scale` should include 2 elements, but it is {}'. | |
format(scale)) | |
else: | |
raise TypeError( | |
"Type of `scale` is invalid. It should be list or tuple, but it is {}" | |
.format(type(scale))) | |
self.size = size | |
self.scale = scale | |
def __call__(self, data): | |
h, w = data['img'].shape[:2] | |
if self.scale is not None: | |
scale = np.random.uniform(self.scale[0], self.scale[1]) | |
else: | |
scale = 1. | |
if self.size is not None: | |
scale_factor = max(self.size[0] / w, self.size[1] / h) | |
else: | |
scale_factor = 1 | |
scale = scale * scale_factor | |
w = int(round(w * scale)) | |
h = int(round(h * scale)) | |
data['img'] = functional.resize(data['img'], (w, h)) | |
for key in data.get('gt_fields', []): | |
if key == 'trimap': | |
data[key] = functional.resize(data[key], (w, h), | |
cv2.INTER_NEAREST) | |
else: | |
data[key] = functional.resize(data[key], (w, h)) | |
return data | |
class ResizeByLong: | |
""" | |
Resize the long side of an image to given size, and then scale the other side proportionally. | |
Args: | |
long_size (int): The target size of long side. | |
""" | |
def __init__(self, long_size): | |
self.long_size = long_size | |
def __call__(self, data): | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
data['img'] = functional.resize_long(data['img'], self.long_size) | |
for key in data.get('gt_fields', []): | |
if key == 'trimap': | |
data[key] = functional.resize_long(data[key], self.long_size, | |
cv2.INTER_NEAREST) | |
else: | |
data[key] = functional.resize_long(data[key], self.long_size) | |
return data | |
class ResizeByShort: | |
""" | |
Resize the short side of an image to given size, and then scale the other side proportionally. | |
Args: | |
short_size (int): The target size of short side. | |
""" | |
def __init__(self, short_size): | |
self.short_size = short_size | |
def __call__(self, data): | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
data['img'] = functional.resize_short(data['img'], self.short_size) | |
for key in data.get('gt_fields', []): | |
if key == 'trimap': | |
data[key] = functional.resize_short(data[key], self.short_size, | |
cv2.INTER_NEAREST) | |
else: | |
data[key] = functional.resize_short(data[key], self.short_size) | |
return data | |
class ResizeToIntMult: | |
""" | |
Resize to some int muitple, d.g. 32. | |
""" | |
def __init__(self, mult_int=32): | |
self.mult_int = mult_int | |
def __call__(self, data): | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
h, w = data['img'].shape[0:2] | |
rw = w - w % self.mult_int | |
rh = h - h % self.mult_int | |
data['img'] = functional.resize(data['img'], (rw, rh)) | |
for key in data.get('gt_fields', []): | |
if key == 'trimap': | |
data[key] = functional.resize(data[key], (rw, rh), | |
cv2.INTER_NEAREST) | |
else: | |
data[key] = functional.resize(data[key], (rw, rh)) | |
return data | |
class Normalize: | |
""" | |
Normalize an image. | |
Args: | |
mean (list, optional): The mean value of a data set. Default: [0.5, 0.5, 0.5]. | |
std (list, optional): The standard deviation of a data set. Default: [0.5, 0.5, 0.5]. | |
Raises: | |
ValueError: When mean/std is not list or any value in std is 0. | |
""" | |
def __init__(self, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)): | |
self.mean = mean | |
self.std = std | |
if not (isinstance(self.mean, | |
(list, tuple)) and isinstance(self.std, | |
(list, tuple))): | |
raise ValueError( | |
"{}: input type is invalid. It should be list or tuple".format( | |
self)) | |
from functools import reduce | |
if reduce(lambda x, y: x * y, self.std) == 0: | |
raise ValueError('{}: std is invalid!'.format(self)) | |
def __call__(self, data): | |
mean = np.array(self.mean)[np.newaxis, np.newaxis, :] | |
std = np.array(self.std)[np.newaxis, np.newaxis, :] | |
data['img'] = functional.normalize(data['img'], mean, std) | |
if 'fg' in data.get('gt_fields', []): | |
data['fg'] = functional.normalize(data['fg'], mean, std) | |
if 'bg' in data.get('gt_fields', []): | |
data['bg'] = functional.normalize(data['bg'], mean, std) | |
return data | |
class RandomCropByAlpha: | |
""" | |
Randomly crop while centered on uncertain area by a certain probability. | |
Args: | |
crop_size (tuple|list): The size you want to crop from image. | |
p (float): The probability centered on uncertain area. | |
""" | |
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640)), | |
prob=0.5): | |
self.crop_size = crop_size | |
self.prob = prob | |
def __call__(self, data): | |
idex = np.random.randint(low=0, high=len(self.crop_size)) | |
crop_w, crop_h = self.crop_size[idex] | |
img_h = data['img'].shape[0] | |
img_w = data['img'].shape[1] | |
if np.random.rand() < self.prob: | |
crop_center = np.where((data['alpha'] > 0) & (data['alpha'] < 255)) | |
center_h_array, center_w_array = crop_center | |
if len(center_h_array) == 0: | |
return data | |
rand_ind = np.random.randint(len(center_h_array)) | |
center_h = center_h_array[rand_ind] | |
center_w = center_w_array[rand_ind] | |
delta_h = crop_h // 2 | |
delta_w = crop_w // 2 | |
start_h = max(0, center_h - delta_h) | |
start_w = max(0, center_w - delta_w) | |
else: | |
start_h = 0 | |
start_w = 0 | |
if img_h > crop_h: | |
start_h = np.random.randint(img_h - crop_h + 1) | |
if img_w > crop_w: | |
start_w = np.random.randint(img_w - crop_w + 1) | |
end_h = min(img_h, start_h + crop_h) | |
end_w = min(img_w, start_w + crop_w) | |
data['img'] = data['img'][start_h:end_h, start_w:end_w] | |
for key in data.get('gt_fields', []): | |
data[key] = data[key][start_h:end_h, start_w:end_w] | |
return data | |
class RandomCrop: | |
""" | |
Randomly crop | |
Args: | |
crop_size (tuple|list): The size you want to crop from image. | |
""" | |
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640))): | |
if not isinstance(crop_size[0], (list, tuple)): | |
crop_size = [crop_size] | |
self.crop_size = crop_size | |
def __call__(self, data): | |
idex = np.random.randint(low=0, high=len(self.crop_size)) | |
crop_w, crop_h = self.crop_size[idex] | |
img_h, img_w = data['img'].shape[0:2] | |
start_h = 0 | |
start_w = 0 | |
if img_h > crop_h: | |
start_h = np.random.randint(img_h - crop_h + 1) | |
if img_w > crop_w: | |
start_w = np.random.randint(img_w - crop_w + 1) | |
end_h = min(img_h, start_h + crop_h) | |
end_w = min(img_w, start_w + crop_w) | |
data['img'] = data['img'][start_h:end_h, start_w:end_w] | |
for key in data.get('gt_fields', []): | |
data[key] = data[key][start_h:end_h, start_w:end_w] | |
return data | |
class LimitLong: | |
""" | |
Limit the long edge of image. | |
If the long edge is larger than max_long, resize the long edge | |
to max_long, while scale the short edge proportionally. | |
If the long edge is smaller than min_long, resize the long edge | |
to min_long, while scale the short edge proportionally. | |
Args: | |
max_long (int, optional): If the long edge of image is larger than max_long, | |
it will be resize to max_long. Default: None. | |
min_long (int, optional): If the long edge of image is smaller than min_long, | |
it will be resize to min_long. Default: None. | |
""" | |
def __init__(self, max_long=None, min_long=None): | |
if max_long is not None: | |
if not isinstance(max_long, int): | |
raise TypeError( | |
"Type of `max_long` is invalid. It should be int, but it is {}" | |
.format(type(max_long))) | |
if min_long is not None: | |
if not isinstance(min_long, int): | |
raise TypeError( | |
"Type of `min_long` is invalid. It should be int, but it is {}" | |
.format(type(min_long))) | |
if (max_long is not None) and (min_long is not None): | |
if min_long > max_long: | |
raise ValueError( | |
'`max_long should not smaller than min_long, but they are {} and {}' | |
.format(max_long, min_long)) | |
self.max_long = max_long | |
self.min_long = min_long | |
def __call__(self, data): | |
h, w = data['img'].shape[:2] | |
long_edge = max(h, w) | |
target = long_edge | |
if (self.max_long is not None) and (long_edge > self.max_long): | |
target = self.max_long | |
elif (self.min_long is not None) and (long_edge < self.min_long): | |
target = self.min_long | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
if target != long_edge: | |
data['img'] = functional.resize_long(data['img'], target) | |
for key in data.get('gt_fields', []): | |
if key == 'trimap': | |
data[key] = functional.resize_long(data[key], target, | |
cv2.INTER_NEAREST) | |
else: | |
data[key] = functional.resize_long(data[key], target) | |
return data | |
class LimitShort: | |
""" | |
Limit the short edge of image. | |
If the short edge is larger than max_short, resize the short edge | |
to max_short, while scale the long edge proportionally. | |
If the short edge is smaller than min_short, resize the short edge | |
to min_short, while scale the long edge proportionally. | |
Args: | |
max_short (int, optional): If the short edge of image is larger than max_short, | |
it will be resize to max_short. Default: None. | |
min_short (int, optional): If the short edge of image is smaller than min_short, | |
it will be resize to min_short. Default: None. | |
""" | |
def __init__(self, max_short=None, min_short=None): | |
if max_short is not None: | |
if not isinstance(max_short, int): | |
raise TypeError( | |
"Type of `max_short` is invalid. It should be int, but it is {}" | |
.format(type(max_short))) | |
if min_short is not None: | |
if not isinstance(min_short, int): | |
raise TypeError( | |
"Type of `min_short` is invalid. It should be int, but it is {}" | |
.format(type(min_short))) | |
if (max_short is not None) and (min_short is not None): | |
if min_short > max_short: | |
raise ValueError( | |
'`max_short should not smaller than min_short, but they are {} and {}' | |
.format(max_short, min_short)) | |
self.max_short = max_short | |
self.min_short = min_short | |
def __call__(self, data): | |
h, w = data['img'].shape[:2] | |
short_edge = min(h, w) | |
target = short_edge | |
if (self.max_short is not None) and (short_edge > self.max_short): | |
target = self.max_short | |
elif (self.min_short is not None) and (short_edge < self.min_short): | |
target = self.min_short | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
if target != short_edge: | |
data['img'] = functional.resize_short(data['img'], target) | |
for key in data.get('gt_fields', []): | |
if key == 'trimap': | |
data[key] = functional.resize_short(data[key], target, | |
cv2.INTER_NEAREST) | |
else: | |
data[key] = functional.resize_short(data[key], target) | |
return data | |
class RandomHorizontalFlip: | |
""" | |
Flip an image horizontally with a certain probability. | |
Args: | |
prob (float, optional): A probability of horizontally flipping. Default: 0.5. | |
""" | |
def __init__(self, prob=0.5): | |
self.prob = prob | |
def __call__(self, data): | |
if random.random() < self.prob: | |
data['img'] = functional.horizontal_flip(data['img']) | |
for key in data.get('gt_fields', []): | |
data[key] = functional.horizontal_flip(data[key]) | |
return data | |
class RandomBlur: | |
""" | |
Blurring an image by a Gaussian function with a certain probability. | |
Args: | |
prob (float, optional): A probability of blurring an image. Default: 0.1. | |
""" | |
def __init__(self, prob=0.1): | |
self.prob = prob | |
def __call__(self, data): | |
if self.prob <= 0: | |
n = 0 | |
elif self.prob >= 1: | |
n = 1 | |
else: | |
n = int(1.0 / self.prob) | |
if n > 0: | |
if np.random.randint(0, n) == 0: | |
radius = np.random.randint(3, 10) | |
if radius % 2 != 1: | |
radius = radius + 1 | |
if radius > 9: | |
radius = 9 | |
data['img'] = cv2.GaussianBlur(data['img'], (radius, radius), 0, | |
0) | |
for key in data.get('gt_fields', []): | |
if key == 'trimap': | |
continue | |
data[key] = cv2.GaussianBlur(data[key], (radius, radius), 0, | |
0) | |
return data | |
class RandomDistort: | |
""" | |
Distort an image with random configurations. | |
Args: | |
brightness_range (float, optional): A range of brightness. Default: 0.5. | |
brightness_prob (float, optional): A probability of adjusting brightness. Default: 0.5. | |
contrast_range (float, optional): A range of contrast. Default: 0.5. | |
contrast_prob (float, optional): A probability of adjusting contrast. Default: 0.5. | |
saturation_range (float, optional): A range of saturation. Default: 0.5. | |
saturation_prob (float, optional): A probability of adjusting saturation. Default: 0.5. | |
hue_range (int, optional): A range of hue. Default: 18. | |
hue_prob (float, optional): A probability of adjusting hue. Default: 0.5. | |
""" | |
def __init__(self, | |
brightness_range=0.5, | |
brightness_prob=0.5, | |
contrast_range=0.5, | |
contrast_prob=0.5, | |
saturation_range=0.5, | |
saturation_prob=0.5, | |
hue_range=18, | |
hue_prob=0.5): | |
self.brightness_range = brightness_range | |
self.brightness_prob = brightness_prob | |
self.contrast_range = contrast_range | |
self.contrast_prob = contrast_prob | |
self.saturation_range = saturation_range | |
self.saturation_prob = saturation_prob | |
self.hue_range = hue_range | |
self.hue_prob = hue_prob | |
def __call__(self, data): | |
brightness_lower = 1 - self.brightness_range | |
brightness_upper = 1 + self.brightness_range | |
contrast_lower = 1 - self.contrast_range | |
contrast_upper = 1 + self.contrast_range | |
saturation_lower = 1 - self.saturation_range | |
saturation_upper = 1 + self.saturation_range | |
hue_lower = -self.hue_range | |
hue_upper = self.hue_range | |
ops = [ | |
functional.brightness, functional.contrast, functional.saturation, | |
functional.hue | |
] | |
random.shuffle(ops) | |
params_dict = { | |
'brightness': { | |
'brightness_lower': brightness_lower, | |
'brightness_upper': brightness_upper | |
}, | |
'contrast': { | |
'contrast_lower': contrast_lower, | |
'contrast_upper': contrast_upper | |
}, | |
'saturation': { | |
'saturation_lower': saturation_lower, | |
'saturation_upper': saturation_upper | |
}, | |
'hue': { | |
'hue_lower': hue_lower, | |
'hue_upper': hue_upper | |
} | |
} | |
prob_dict = { | |
'brightness': self.brightness_prob, | |
'contrast': self.contrast_prob, | |
'saturation': self.saturation_prob, | |
'hue': self.hue_prob | |
} | |
im = data['img'].astype('uint8') | |
im = Image.fromarray(im) | |
for id in range(len(ops)): | |
params = params_dict[ops[id].__name__] | |
params['im'] = im | |
prob = prob_dict[ops[id].__name__] | |
if np.random.uniform(0, 1) < prob: | |
im = ops[id](**params) | |
data['img'] = np.asarray(im) | |
for key in data.get('gt_fields', []): | |
if key in ['alpha', 'trimap']: | |
continue | |
else: | |
im = data[key].astype('uint8') | |
im = Image.fromarray(im) | |
for id in range(len(ops)): | |
params = params_dict[ops[id].__name__] | |
params['im'] = im | |
prob = prob_dict[ops[id].__name__] | |
if np.random.uniform(0, 1) < prob: | |
im = ops[id](**params) | |
data[key] = np.asarray(im) | |
return data | |
class Padding: | |
""" | |
Add bottom-right padding to a raw image or annotation image. | |
Args: | |
target_size (list|tuple): The target size after padding. | |
im_padding_value (list, optional): The padding value of raw image. | |
Default: [127.5, 127.5, 127.5]. | |
label_padding_value (int, optional): The padding value of annotation image. Default: 255. | |
Raises: | |
TypeError: When target_size is neither list nor tuple. | |
ValueError: When the length of target_size is not 2. | |
""" | |
def __init__(self, target_size, im_padding_value=(127.5, 127.5, 127.5)): | |
if isinstance(target_size, list) or isinstance(target_size, tuple): | |
if len(target_size) != 2: | |
raise ValueError( | |
'`target_size` should include 2 elements, but it is {}'. | |
format(target_size)) | |
else: | |
raise TypeError( | |
"Type of target_size is invalid. It should be list or tuple, now is {}" | |
.format(type(target_size))) | |
self.target_size = target_size | |
self.im_padding_value = im_padding_value | |
def __call__(self, data): | |
im_height, im_width = data['img'].shape[0], data['img'].shape[1] | |
target_height = self.target_size[1] | |
target_width = self.target_size[0] | |
pad_height = max(0, target_height - im_height) | |
pad_width = max(0, target_width - im_width) | |
data['trans_info'].append(('padding', data['img'].shape[0:2])) | |
if (pad_height == 0) and (pad_width == 0): | |
return data | |
else: | |
data['img'] = cv2.copyMakeBorder( | |
data['img'], | |
0, | |
pad_height, | |
0, | |
pad_width, | |
cv2.BORDER_CONSTANT, | |
value=self.im_padding_value) | |
for key in data.get('gt_fields', []): | |
if key in ['trimap', 'alpha']: | |
value = 0 | |
else: | |
value = self.im_padding_value | |
data[key] = cv2.copyMakeBorder( | |
data[key], | |
0, | |
pad_height, | |
0, | |
pad_width, | |
cv2.BORDER_CONSTANT, | |
value=value) | |
return data | |
class RandomSharpen: | |
def __init__(self, prob=0.1): | |
if prob < 0: | |
self.prob = 0 | |
elif prob > 1: | |
self.prob = 1 | |
else: | |
self.prob = prob | |
def __call__(self, data): | |
if np.random.rand() > self.prob: | |
return data | |
radius = np.random.choice([0, 3, 5, 7, 9]) | |
w = np.random.uniform(0.1, 0.5) | |
blur_img = cv2.GaussianBlur(data['img'], (radius, radius), 5) | |
data['img'] = cv2.addWeighted(data['img'], 1 + w, blur_img, -w, 0) | |
for key in data.get('gt_fields', []): | |
if key == 'trimap' or key == 'alpha': | |
continue | |
blur_img = cv2.GaussianBlur(data[key], (0, 0), 5) | |
data[key] = cv2.addWeighted(data[key], 1.5, blur_img, -0.5, 0) | |
return data | |
class RandomNoise: | |
def __init__(self, prob=0.1): | |
if prob < 0: | |
self.prob = 0 | |
elif prob > 1: | |
self.prob = 1 | |
else: | |
self.prob = prob | |
def __call__(self, data): | |
if np.random.rand() > self.prob: | |
return data | |
mean = np.random.uniform(0, 0.04) | |
var = np.random.uniform(0, 0.001) | |
noise = np.random.normal(mean, var**0.5, data['img'].shape) * 255 | |
data['img'] = data['img'] + noise | |
data['img'] = np.clip(data['img'], 0, 255) | |
return data | |
class RandomReJpeg: | |
def __init__(self, prob=0.1): | |
if prob < 0: | |
self.prob = 0 | |
elif prob > 1: | |
self.prob = 1 | |
else: | |
self.prob = prob | |
def __call__(self, data): | |
if np.random.rand() > self.prob: | |
return data | |
q = np.random.randint(70, 95) | |
img = data['img'].astype('uint8') | |
# Ensure no conflicts between processes | |
tmp_name = str(os.getpid()) + '.jpg' | |
tmp_name = os.path.join(seg_env.TMP_HOME, tmp_name) | |
cv2.imwrite(tmp_name, img, [int(cv2.IMWRITE_JPEG_QUALITY), q]) | |
data['img'] = cv2.imread(tmp_name) | |
return data | |