praeclarumjj3's picture
:zap: add code
9fa3d89
raw
history blame
14.5 kB
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from ola_vlm.model.multimodal_projector.resampler import Resampler, TaskTokenResampler
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module.
"""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups=1
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
if self.bn == True:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn == True:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn == True:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block.
"""
def __init__(
self,
features,
activation,
deconv=False,
bn=False,
expand=False,
align_corners=True,
size=None
):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups=1
self.expand = expand
out_features = features
if self.expand == True:
out_features = features // 2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
self.size=size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output
def _make_fusion_block(features, use_bn, size=None):
return FeatureFusionBlock(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
size=size,
)
class ConvBlock(nn.Module):
def __init__(self, in_feature, out_feature):
super().__init__()
self.conv_block = nn.Sequential(
nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_feature),
nn.ReLU(True)
)
def forward(self, x):
return self.conv_block(x)
class DPTHead(nn.Module):
def __init__(
self,
in_channels,
features=256,
use_bn=False,
out_channels=[256, 512, 1024, 1024],
use_clstoken=False
):
super(DPTHead, self).__init__()
self.use_clstoken = use_clstoken
self.projects = nn.ModuleList([
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
stride=1,
padding=0,
) for out_channel in out_channels
])
self.resize_layers = nn.ModuleList([
nn.ConvTranspose2d(
in_channels=out_channels[0],
out_channels=out_channels[0],
kernel_size=4,
stride=4,
padding=0),
nn.ConvTranspose2d(
in_channels=out_channels[1],
out_channels=out_channels[1],
kernel_size=2,
stride=2,
padding=0),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3],
out_channels=out_channels[3],
kernel_size=3,
stride=2,
padding=1)
])
if use_clstoken:
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(
nn.Sequential(
nn.Linear(2 * in_channels, in_channels),
nn.GELU()))
self.scratch = _make_scratch(
out_channels,
features,
groups=1,
expand=False,
)
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
head_features_1 = features
head_features_2 = 32
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True),
nn.Identity(),
)
def forward(self, out_features, patch_h, patch_w):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
out = self.scratch.output_conv2(out)
return out
class DAv2_Head(nn.Module):
def __init__(
self,
encoder='vitl',
features=256,
out_channels=[256, 512, 1024, 1024],
use_bn=False,
use_clstoken=False
):
super(DAv2_Head, self).__init__()
self.embd_dims = {
'vits': 1024,
'vitb': 1024,
'vitl': 1024,
'vitg': 1024,
}
self.depth_head = DPTHead(self.embd_dims[encoder], features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)
def forward(self, features):
patch_h, patch_w = 336 // 14, 336 // 14
depth = self.depth_head(features, patch_h, patch_w)
depth = F.relu(depth)
return depth.squeeze(1)
@torch.no_grad()
def infer_feats(self, feats, image_size=(336, 336)):
h, w = image_size
depth = self.forward(feats)
depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0]
return depth.cpu().numpy()
def build_mlp(in_hidden_size, hidden_size):
modules = [nn.Linear(in_hidden_size, hidden_size)]
modules.append(nn.ReLU())
modules.append(nn.Linear(hidden_size, hidden_size))
return nn.Sequential(*modules)
def build_expand_mlp(in_hidden_size, hidden_size, out_size):
modules = [nn.Linear(in_hidden_size, hidden_size)]
modules.append(nn.ReLU())
modules.append(nn.Linear(hidden_size, hidden_size))
modules.append(nn.ReLU())
modules.append(nn.Linear(hidden_size, out_size))
return nn.Sequential(*modules)
class DepthProbeHead(nn.Module):
def __init__(
self,
llm_hidden_size=4096,
proj_config=None,
):
super(DepthProbeHead, self).__init__()
self.linear_1 = build_mlp(llm_hidden_size, proj_config["output_dim"])
self.linear_2 = build_mlp(llm_hidden_size, proj_config["output_dim"])
self.linear_3 = build_mlp(llm_hidden_size, proj_config["output_dim"])
self.linear_4 = build_mlp(llm_hidden_size, proj_config["output_dim"])
# self._init_weights()
# def _init_weights(self):
# for m in self.modules():
# if isinstance(m, nn.Linear):
# nn.init.xavier_uniform_(m.weight)
# if m.bias is not None:
# nn.init.constant_(m.bias, 0)
def forward(self, llm_feats):
features = [(self.linear_1(llm_feats), None),
(self.linear_1(llm_feats), None),
(self.linear_2(llm_feats), None),
(self.linear_3(llm_feats), None)
]
return features
class DepthHead(nn.Module):
def __init__(
self,
llm_hidden_size=4096,
proj_config=None,
use_intermediate_depth=False,
):
super(DepthHead, self).__init__()
self.projector = Resampler(
dim=proj_config["output_dim"],
depth=proj_config["depth"],
dim_head=proj_config["dim_head"],
heads=proj_config["num_heads"],
num_queries=proj_config["num_tokens"],
embedding_dim=llm_hidden_size,
output_dim=proj_config["output_dim"],
ff_mult=proj_config["ff_mult"],
)
self.use_intermediate_depth = use_intermediate_depth
if self.use_intermediate_depth:
self.linear_1 = build_mlp(proj_config["output_dim"], proj_config["output_dim"])
self.linear_2 = build_mlp(proj_config["output_dim"], proj_config["output_dim"])
self.linear_3 = build_mlp(proj_config["output_dim"], proj_config["output_dim"])
def forward(self, llm_feats):
visual_feats = self.projector(llm_feats)
features = []
if self.use_intermediate_depth:
features.append((self.linear_1(visual_feats), None))
features.append((self.linear_2(visual_feats), None))
features.append((self.linear_3(visual_feats), None))
features.append((visual_feats, None))
return features
class TaskTokenDepthHead(nn.Module):
def __init__(
self,
proj_config=None,
llm_hidden_size=4096,
use_intermediate_depth=False,
):
super(TaskTokenDepthHead, self).__init__()
self.projector = TaskTokenResampler(
dim=llm_hidden_size,
depth=proj_config["depth"],
dim_head=proj_config["dim_head"],
heads=proj_config["num_heads"],
num_queries=proj_config["num_tokens"],
embedding_dim=llm_hidden_size,
output_dim=proj_config["output_dim"],
ff_mult=proj_config["ff_mult"],
)
self.use_intermediate_depth = use_intermediate_depth
if self.use_intermediate_depth:
self.linear_1 = build_mlp(proj_config["output_dim"], proj_config["output_dim"])
self.linear_2 = build_mlp(proj_config["output_dim"], proj_config["output_dim"])
self.linear_3 = build_mlp(proj_config["output_dim"], proj_config["output_dim"])
def forward(self, llm_feats, latents):
visual_feats = self.projector(llm_feats, latents)
features = []
if self.use_intermediate_depth:
features.append((self.linear_1(visual_feats), None))
features.append((self.linear_2(visual_feats), None))
features.append((self.linear_3(visual_feats), None))
features.append((visual_feats, None))
return features